2,247 research outputs found

    Preventive treatment for diseases: A practice model. a challenge for hospital management in the field of integrative medicine

    Full text link
    The concept of preventive treatment for diseases in the Chinese context originated in an ancient Chinese medical text called The Yellow Emperor's Inner Canon or The Inner Canon of Huangdi. This concept is that of taking treatment measures in order to prevent recurrence of diseases and consequent deterioration in health and well-being. There are three aspects of preventive treatment: 1) preventive measures before the onset of the illness; 2) measures taken against deterioration during the illness; and 3) measures taken against relapse after recovery.1 The authors introduced a Tradtional Chinese Medicine (TCM) model of preventive treatment for diseases into the clinical health care practice at Guangdong Women's and Children's Hospital (GDWCH). TCM principles and methodologies were applied along with modern medical practices of diagnosis and treatment. The study found that the new model of integrative medicine applied at GDWCH presented a wide range of possibilities for both social benefits and good medical prognosis

    Simulation of the deflected cutting tool trajectory in complex surface milling

    Get PDF
    Since industry is rapidly developing, either locally or globally, manufacturers witness harder challenges due to the growing competitivity. This urges them to better consider the four factors linked to production and output: quality, quantity, cost and price, quality being of course the most important factor which constitutes their main concern. Efforts will be concentrated—in this research—on improving the quality and securing more accuracy for a machined surface in ball-end milling. Quality and precision are two essential criteria in industrial milling. However, milling errors and imperfections, duemainly to the cutting tool deflection, hinder the full achieving of these targets. Our task, all along this paper, consists in studying and realizing the simulation of the deflected cutting tool trajectory, by using the methods which are available. In a future stage, and in the frame of a deeper research, the simulation process will help to carry out the correction and the compensation of the errors resulting from the tool deflection. The corrected trajectory which is obtained by the method mirror will be sent to the machine. To achieve this goal, the next process consists—as a first step—in selecting a model of cutting forces for a ball-end mill. This allows to define—later on—the behavior of this tool, and the emergence of three methods namely the analytical model, the finite elements method, and the experimental method. It is possible to tackle the cutting forces simulation, all along the tool trajectory, while this latter is carrying out the sweeping of the part to be machined in milling and taking into consideration the cutting conditions, as well as the geography of the workpiece. A simulation of the deflected cutting tool trajectory dependent on the cutting forces has been realized

    A reference-component coordinate system approach to model the mass transfer of a droplet with binary volatiles

    Full text link
    A theoretical framework based on the reference-component centered coordinates was modified to enable the prediction study of the simultaneous absorption and evaporation of droplets consisting of two volatiles. A new equation of Robin boundary condition was imposed at the droplet-ambience interface, coupling with a new numerical scheme for solution. Experimental validation was performed with the following situations: evaporation of single pure droplet and bicomponent droplet, and simultaneous absorption and evaporation of droplet. The model predicted the mass profiles reasonably well for droplet evaporation while over-prediction was found for the case of simultaneous absorption and evaporation of droplet. Further preliminary evaluation has found the necessity to encounter the phenomenon of mass flux depression when predicting the simultaneous absorption and evaporation of droplet. This will provide a potential predictive tool for the processes which involves droplet absorption, such as antisolvent-vapor precipitation and gas scrubbing

    A Novel Unsupervised Method to Identify Genes Important in the Anti-viral Response: Application to Interferon/Ribavirin in Hepatitis C Patients

    Get PDF
    Background: Treating hepatitis C with interferon/ribavirin results in a varied response in terms of decrease in viral titer and ultimate outcome. Marked responders have a sharp decline in viral titer within a few days of treatment initiation, whereas in other patients there is no effect on the virus (poor responders). Previous studies have shown that combination therapy modifies expression of hundreds of genes in vitro and in vivo. However, identifying which, if any, of these genes have a role in viral clearance remains challenging. Aims: The goal of this paper is to link viral levels with gene expression and thereby identify genes that may be responsible for early decrease in viral titer. Methods: Microarrays were performed on RNA isolated from PBMC of patients undergoing interferon/ribavirin therapy. Samples were collected at pre-treatment (day 0), and 1, 2, 7, 14 and 28 days after initiating treatment. A novel method was applied to identify genes that are linked to a decrease in viral titer during interferon/ribavirin treatment. The method uses the relationship between inter-patient gene expression based proximities and inter-patient viral titer based proximities to define the association between microarray gene expression measurements of each gene and viral-titer measurements. Results: We detected 36 unique genes whose expressions provide a clustering of patients that resembles viral titer based clustering of patients. These genes include IRF7, MX1, OASL and OAS2, viperin and many ISG's of unknown function. Conclusion: The genes identified by this method appear to play a major role in the reduction of hepatitis C virus during the early phase of treatment. The method has broad utility and can be used to analyze response to any group of factors influencing biological outcome such as antiviral drugs or anti-cancer agents where microarray data are available. © 2007 Brodsky et al

    Orbital superfluidity in the PP-band of a bipartite optical square lattice

    Full text link
    The successful emulation of the Hubbard model in optical lattices has stimulated world wide efforts to extend their scope to also capture more complex, incompletely understood scenarios of many-body physics. Unfortunately, for bosons, Feynmans fundamental "no-node" theorem under very general circumstances predicts a positive definite ground state wave function with limited relevance for many-body systems of interest. A promising way around Feynmans statement is to consider higher bands in optical lattices with more than one dimension, where the orbital degree of freedom with its intrinsic anisotropy due to multiple orbital orientations gives rise to a structural diversity, highly relevant, for example, in the area of strongly correlated electronic matter. In homogeneous two-dimensional optical lattices, lifetimes of excited bands on the order of a hundred milliseconds are possible but the tunneling dynamics appears not to support cross-dimensional coherence. Here we report the first observation of a superfluid in the PP-band of a bipartite optical square lattice with SS-orbits and PP-orbits arranged in a chequerboard pattern. This permits us to establish full cross-dimensional coherence with a life-time of several ten milliseconds. Depending on a small adjustable anisotropy of the lattice, we can realize real-valued striped superfluid order parameters with different orientations Px±PyP_x \pm P_y or a complex-valued Px±iPyP_x \pm i P_y order parameter, which breaks time reversal symmetry and resembles the π\pi-flux model proposed in the context of high temperature superconductors. Our experiment opens up the realms of orbital superfluids to investigations with optical lattice models.Comment: 5 pages, 5 figure

    Assisted evolution enables HIV-1 to overcome a high trim5α-imposed genetic barrier to rhesus macaque tropism

    Get PDF
    Diversification of antiretroviral factors during host evolution has erected formidable barriers to cross-species retrovirus transmission. This phenomenon likely protects humans from infection by many modern retroviruses, but it has also impaired the development of primate models of HIV-1 infection. Indeed, rhesus macaques are resistant to HIV-1, in part due to restriction imposed by the TRIM5α protein (rhTRIM5α). Initially, we attempted to derive rhTRIM5α-resistant HIV-1 strains using two strategies. First, HIV-1 was passaged in engineered human cells expressing rhTRIM5α. Second, a library of randomly mutagenized capsid protein (CA) sequences was screened for mutations that reduced rhTRIM5α sensitivity. Both approaches identified several individual mutations in CA that reduced rhTRIM5α sensitivity. However, neither approach yielded mutants that were fully resistant, perhaps because the locations of the mutations suggested that TRIM5α recognizes multiple determinants on the capsid surface. Moreover, even though additive effects of various CA mutations on HIV-1 resistance to rhTRIM5α were observed, combinations that gave full resistance were highly detrimental to fitness. Therefore, we employed an 'assisted evolution' approach in which individual CA mutations that reduced rhTRIM5α sensitivity without fitness penalties were randomly assorted in a library of viral clones containing synthetic CA sequences. Subsequent passage of the viral library in rhTRIM5α-expressing cells resulted in the selection of individual viral species that were fully fit and resistant to rhTRIM5α. These viruses encoded combinations of five mutations in CA that conferred complete or near complete resistance to the disruptive effects of rhTRIM5α on incoming viral cores, by abolishing recognition of the viral capsid. Importantly, HIV-1 variants encoding these CA substitutions and SIVmac239 Vif replicated efficiently in primary rhesus macaque lymphocytes. These findings demonstrate that rhTRIM5α is difficult to but not impossible to evade, and doing so should facilitate the development of primate models of HIV-1 infection

    Mannose-binding lectin in severe acute respiratory syndrome coronavirus infection

    Get PDF
    Little is known about the innate immune response to severe acute respiratory syndrome (SARS) coronavirus (CoV) infection. Mannose-binding lectin (MBL), a key molecule in innate immunity, functions as an ante-antibody before the specific antibody response. Here, we describe a case-control study that included 569 patients with SARS and 1188 control subjects and used in vitro assays to investigate the role that MBL plays in SARS-CoV infection. The distribution of MBL gene polymorphisms was significantly different between patients with SARS and control subjects, with a higher frequency of haplotypes associated with low or deficient serum levels of MBL in patients with SARS than in control subjects. Serum levels of MBL were also significantly lower in patients with SARS than in control subjects. There was, however, no association between MBL genotypes, which are associated with low or deficient serum levels of MBL, and mortality related to SARS. MBL could bind SARS-CoV in a dose- and calcium-dependent and mannan-inhibitable fashion in vitro, suggesting that binding is through the carbohydrate recognition domains of MBL. Furthermore, deposition of complement C4 on SARS-CoV was enhanced by MBL. Inhibition of the infectivity of SARS-CoV by MBL in fetal rhesus kidney cells (FRhK-4) was also observed. These results suggest that MBL contributes to the first-line host defense against SARS-CoV and that MBL deficiency is a susceptibility factor for acquisition of SARS. © 2005 by the Infectious Diseases Society of America. All rights reserved.published_or_final_versio

    Evolutionary Toggling of Vpx/Vpr Specificity Results in Divergent Recognition of the Restriction Factor SAMHD1

    Get PDF
    SAMHD1 is a host restriction factor that blocks the ability of lentiviruses such as HIV-1 to undergo reverse transcription in myeloid cells and resting T-cells. This restriction is alleviated by expression of the lentiviral accessory proteins Vpx and Vpr (Vpx/Vpr), which target SAMHD1 for proteasome-mediated degradation. However, the precise determinants within SAMHD1 for recognition by Vpx/Vpr remain unclear. Here we show that evolution of Vpx/Vpr in primate lentiviruses has caused the interface between SAMHD1 and Vpx/Vpr to alter during primate lentiviral evolution. Using multiple HIV-2 and SIV Vpx proteins, we show that Vpx from the HIV-2 and SIVmac lineage, but not Vpx from the SIVmnd2 and SIVrcm lineage, require the C-terminus of SAMHD1 for interaction, ubiquitylation, and degradation. On the other hand, the N-terminus of SAMHD1 governs interactions with Vpx from SIVmnd2 and SIVrcm, but has little effect on Vpx from HIV-2 and SIVmac. Furthermore, we show here that this difference in SAMHD1 recognition is evolutionarily dynamic, with the importance of the N- and C-terminus for interaction of SAMHD1 with Vpx and Vpr toggling during lentiviral evolution. We present a model to explain how the head-to-tail conformation of SAMHD1 proteins favors toggling of the interaction sites by Vpx/Vpr during this virus-host arms race. Such drastic functional divergence within a lentiviral protein highlights a novel plasticity in the evolutionary dynamics of viral antagonists for restriction factors during lentiviral adaptation to its hosts. © 2013 Fregoso et al
    • …
    corecore