Abstract

The successful emulation of the Hubbard model in optical lattices has stimulated world wide efforts to extend their scope to also capture more complex, incompletely understood scenarios of many-body physics. Unfortunately, for bosons, Feynmans fundamental "no-node" theorem under very general circumstances predicts a positive definite ground state wave function with limited relevance for many-body systems of interest. A promising way around Feynmans statement is to consider higher bands in optical lattices with more than one dimension, where the orbital degree of freedom with its intrinsic anisotropy due to multiple orbital orientations gives rise to a structural diversity, highly relevant, for example, in the area of strongly correlated electronic matter. In homogeneous two-dimensional optical lattices, lifetimes of excited bands on the order of a hundred milliseconds are possible but the tunneling dynamics appears not to support cross-dimensional coherence. Here we report the first observation of a superfluid in the PP-band of a bipartite optical square lattice with SS-orbits and PP-orbits arranged in a chequerboard pattern. This permits us to establish full cross-dimensional coherence with a life-time of several ten milliseconds. Depending on a small adjustable anisotropy of the lattice, we can realize real-valued striped superfluid order parameters with different orientations Px±PyP_x \pm P_y or a complex-valued Px±iPyP_x \pm i P_y order parameter, which breaks time reversal symmetry and resembles the π\pi-flux model proposed in the context of high temperature superconductors. Our experiment opens up the realms of orbital superfluids to investigations with optical lattice models.Comment: 5 pages, 5 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions