75 research outputs found
'Be active, eat right', evaluation of an overweight prevention protocol among 5-year-old children: design of a cluster randomised controlled trial
BACKGROUND: The prevalence of overweight and obesity in children has at least doubled in the past 25 years with a major impact on health. In 2005 a prevention protocol was developed applicable within Youth Health Care. This study aims to assess the effects of this protocol on prevalence of overweight and health behaviour among children. METHODS AND DESIGN: A cluster randomised controlled trial is conducted among 5-year-old children included by 44 Youth Health Care teams randomised within 9 Municipal Health Services. The teams are randomly allocated to the intervention or control group. The teams measure the weight and height of all children. When a child in the intervention group is detected with overweight according to the international age and gender specific cut-off points of BMI, the prevention protocol is applied. According to this protocol parents of overweight children are invited for up to three counselling sessions during which they receive personal advice about a healthy lifestyle, and are motivated for and assisted in behavioural change.The primary outcome measures are Body Mass Index and waist circumference of the children. Parents will complete questionnaires to assess secondary outcome measures: levels of overweight inducing/reducing behaviours (i.e. being physically active, having breakfast, drinking sweet beverages and watching television/playing computer games), parenting styles, parenting practices, and attitudes of parents regarding these behaviours, health-related quality of life of the children, and possible negative side effects of the prevention protocol. Data will be collected at baseline (when the children are aged 5 years), and after 12 and 24 months of follow-up. Additionally, a process and a cost-effectiveness evaluation will be conducted. DISCUSSION: In this study called 'Be active, eat right' we evaluate an overweight prevention protocol for use in the setting of Youth Health Care. It is hypothesized that the use of this protocol will result in a healthier lifestyle of the children and an improved BMI and waist circumference. TRIAL REGISTRATION: Current Controlled Trials ISRCTN04965410
Age-dependent alteration of TGF-β signalling in osteoarthritis
Osteoarthritis (OA) is a disease of articular cartilage, with aging as the main risk factor. In OA, changes in chondrocytes lead to the autolytic destruction of cartilage. Transforming growth factor-β has recently been demonstrated to signal not only via activin receptor-like kinase 5 (ALK5)-induced Smad2/3 phosphorylation, but also via ALK1-induced Smad1/5/8 phosphorylation in articular cartilage. In aging cartilage and experimental OA, the ratio ALK1/ALK5 has been found to be increased, and the expression of ALK1 is correlated with matrix metalloproteinase-13 expression. The age-dependent shift towards Smad1/5/8 signalling might trigger the differentiation of articular chondrocytes with an autolytic phenotype
Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility.
Heterogeneity of embryological origins is a hallmark of vascular smooth muscle cells (SMCs) and may influence the development of vascular disease. Differentiation of human pluripotent stem cells (hPSCs) into developmental origin-specific SMC subtypes remains elusive. Here we describe a chemically defined protocol in which hPSCs were initially induced to form neuroectoderm, lateral plate mesoderm or paraxial mesoderm. These intermediate populations were further differentiated toward SMCs (>80% MYH11(+) and ACTA2(+)), which displayed contractile ability in response to vasoconstrictors and invested perivascular regions in vivo. Derived SMC subtypes recapitulated the unique proliferative and secretory responses to cytokines previously documented in studies using aortic SMCs of distinct origins. Notably, this system predicted increased extracellular matrix degradation by SMCs derived from lateral plate mesoderm, which was confirmed using rat aortic SMCs from corresponding origins. This differentiation approach will have broad applications in modeling origin-dependent disease susceptibility and in developing bioengineered vascular grafts for regenerative medicine
Redox regulation of mitochondrial fission, protein misfolding, synaptic damage, and neuronal cell death: potential implications for Alzheimer’s and Parkinson’s diseases
Normal mitochondrial dynamics consist of fission and fusion events giving rise to new mitochondria, a process termed mitochondrial biogenesis. However, several neurodegenerative disorders manifest aberrant mitochondrial dynamics, resulting in morphological abnormalities often associated with deficits in mitochondrial mobility and cell bioenergetics. Rarely, dysfunctional mitochondrial occur in a familial pattern due to genetic mutations, but much more commonly patients manifest sporadic forms of mitochondrial disability presumably related to a complex set of interactions of multiple genes (or their products) with environmental factors (G × E). Recent studies have shown that generation of excessive nitric oxide (NO), in part due to generation of oligomers of amyloid-β (Aβ) protein or overactivity of the NMDA-subtype of glutamate receptor, can augment mitochondrial fission, leading to frank fragmentation of the mitochondria. S-Nitrosylation, a covalent redox reaction of NO with specific protein thiol groups, represents one mechanism contributing to NO-induced mitochondrial fragmentation, bioenergetic failure, synaptic damage, and eventually neuronal apoptosis. Here, we summarize our evidence in Alzheimer’s disease (AD) patients and animal models showing that NO contributes to mitochondrial fragmentation via S-nitrosylation of dynamin-related protein 1 (Drp1), a protein involved in mitochondrial fission. These findings may provide a new target for drug development in AD. Additionally, we review emerging evidence that redox reactions triggered by excessive levels of NO can contribute to protein misfolding, the hallmark of a number of neurodegenerative disorders, including AD and Parkinson’s disease. For example, S-nitrosylation of parkin disrupts its E3 ubiquitin ligase activity, and thereby affects Lewy body formation and neuronal cell death
Climate controls over ecosystem metabolism: insights from a fifteen-year inductive artificial neural network synthesis for a subalpine forest
Eddy covariance (EC) datasets have provided insight into climate determinants of net ecosystem productivity (NEP) and evapotranspiration (ET) in natural ecosystems for decades, but most EC studies were published in serial fashion such that one study's result became the following study's hypothesis. This approach reflects the hypothetico-deductive process by focusing on previously derived hypotheses. A synthesis of this type of sequential inference reiterates subjective biases and may amplify past assumptions about the role, and relative importance, of controls over ecosystem metabolism. Long-term EC datasets facilitate an alternative approach to synthesis: the use of inductive data-based analyses to re-examine past deductive studies of the same ecosystem. Here we examined the seasonal climate determinants of NEP and ET by analyzing a 15-year EC time-series from a subalpine forest using an ensemble of Artificial Neural Networks (ANNs) at the half-day (daytime/nighttime) time-step. We extracted relative rankings of climate drivers and driver-response relationships directly from the dataset with minimal a priori assumptions. The ANN analysis revealed temperature variables as primary climate drivers of NEP and daytime ET, when all seasons are considered, consistent with the assembly of past studies. New relations uncovered by the ANN approach include the role of soil moisture in driving daytime NEP during the snowmelt period, the nonlinear response of NEP to temperature across seasons, and the low relevance of summer rainfall for NEP or ET at the same daytime/nighttime time step. These new results offer a more complete perspective of climate-ecosystem interactions at this site than traditional deductive analyses alone
- …