45 research outputs found

    Effects of edible bird's nest (EBN) on cultured rabbit corneal keratocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There has been no effective treatment or agent that is available for corneal injury in promoting corneal wound healing. Previous studies on edible bird's nest extract (EBN) had reported the presence of hormone-like substance; avian epidermal growth factor that could stimulate cell division and enhance regeneration. This study aimed to investigate the effects of EBN on corneal keratocytes proliferative capacity and phenotypical changes.</p> <p>Methods</p> <p>Corneal keratocytes from six New Zealand White Rabbits were isolated and cultured until Passage 1. The proliferative effects of EBN on corneal keratocytes were determined by MTT assay in serum-containing medium (FDS) and serum-free medium (FD). Keratocytes phenotypical changes were morphologically assessed and gene expression of aldehyde dehydrogenase (ALDH), collagen type 1 and lumican were determined through RT-PCR.</p> <p>Results</p> <p>The highest cell proliferation was observed when both media were supplemented with 0.05% and 0.1% EBN. Cell proliferation was also consistently higher in FDS compared to FD. Both phase contrast micrographs and gene expression analysis confirmed the corneal keratocytes retained their phenotypes with the addition of EBN.</p> <p>Conclusions</p> <p>These results suggested that low concentration of EBN could synergistically induce cell proliferation, especially in serum-containing medium. This could be a novel breakthrough as both cell proliferation and functional maintenance are important during corneal wound healing. The in vitro test is considered as a crucial first step for nutri-pharmaceutical formation of EBN-based eye drops before in vivo application.</p

    Culture of human mesenchymal stem cells on microcarriers in a 5 l stirred-tank bioreactor

    Get PDF
    This article was published in the journal, Biotechnology Letters [© Springer Science+Business Media] and the definitive version is available at: http://dx.doi.org/10.1007/s10529-013-1211-9For the first time, fully functional human mesenchymal stem cells (hMSCs) have been cultured at the litre-scale on microcarriers in a stirred-tank 5 l bioreactor, (2.5 l working volume) and were harvested via a potentially scalable detachment protocol that allowed for the successful detachment of hMSCs from the cell-microcarrier suspension. Over 12 days, the dissolved O2 concentration was >45 % of saturation and the pH between 7.2 and 6.7 giving a maximum cell density in the 5 l bioreactor of 1.7 × 105 cells/ml; this represents >sixfold expansion of the hMSCs, equivalent to that achievable from 65 fully-confluent T-175 flasks. During this time, the average specific O2 uptake of the cells in the 5 l bioreactor was 8.1 fmol/cell h and, in all cases, the 5 l bioreactors outperformed the equivalent 100 ml spinner-flasks run in parallel with respect to cell yields and growth rates. In addition, yield coefficients, specific growth rates and doubling times were calculated for all systems. Neither the upstream nor downstream bioprocessing unit operations had a discernible effect on cell quality with the harvested cells retaining their immunophenotypic markers, key morphological features and differentiation capacity

    The avian cell line AGE1.CR.pIX characterized by metabolic flux analysis

    Get PDF
    Lohr V, Haedicke O, Genzel Y, et al. The avian cell line AGE1.CR.pIX characterized by metabolic flux analysis. BMC Biotechnology. 2014;14(1): 72.Background: In human vaccine manufacturing some pathogens such as Modified Vaccinia Virus Ankara, measles, mumps virus as well as influenza viruses are still produced on primary material derived from embryonated chicken eggs. Processes depending on primary cell culture, however, are difficult to adapt to modern vaccine production. Therefore, we derived previously a continuous suspension cell line, AGE1.CR.pIX, from muscovy duck and established chemically-defined media for virus propagation. Results: To better understand vaccine production processes, we developed a stoichiometric model of the central metabolism of AGE1.CR.pIX cells and applied flux variability and metabolic flux analysis. Results were compared to literature dealing with mammalian and insect cell culture metabolism focusing on the question whether cultured avian cells differ in metabolism. Qualitatively, the observed flux distribution of this avian cell line was similar to distributions found for mammalian cell lines (e.g. CHO, MDCK cells). In particular, glucose was catabolized inefficiently and glycolysis and TCA cycle seem to be only weakly connected. Conclusions: A distinguishing feature of the avian cell line is that glutaminolysis plays only a minor role in energy generation and production of precursors, resulting in low extracellular ammonia concentrations. This metabolic flux study is the first for a continuous avian cell line. It provides a basis for further metabolic analyses to exploit the biotechnological potential of avian and vertebrate cell lines and to develop specific optimized cell culture processes, e.g. vaccine production processes

    Control of Cell Concentration in Fedbatch Hybridoma Cultures

    No full text

    Monitoring and Modelling Hybridoma Cultures

    No full text

    Simulation of animal cell metabolism

    No full text
    corecore