236 research outputs found

    Engineering a BCR-ABL-activated caspase for the selective elimination of leukemic cells.

    Get PDF
    Increased understanding of the precise molecular mechanisms involved in cell survival and cell death signaling pathways offers the promise of harnessing these molecules to eliminate cancer cells without damaging normal cells. Tyrosine kinase oncoproteins promote the genesis of leukemias through both increased cell proliferation and inhibition of apoptotic cell death. Although tyrosine kinase inhibitors, such as the BCR-ABL inhibitor imatinib, have demonstrated remarkable efficacy in the clinic, drug-resistant leukemias emerge in some patients because of either the acquisition of point mutations or amplification of the tyrosine kinase, resulting in a poor long-term prognosis. Here, we exploit the molecular mechanisms of caspase activation and tyrosine kinase/adaptor protein signaling to forge a unique approach for selectively killing leukemic cells through the forcible induction of apoptosis. We have engineered caspase variants that can directly be activated in response to BCR-ABL. Because we harness, rather than inhibit, the activity of leukemogenic kinases to kill transformed cells, this approach selectively eliminates leukemic cells regardless of drug-resistant mutations

    CCN3: a key growth regulator in Chronic Myeloid Leukaemia

    Get PDF
    Chronic Myeloid Leukaemia (CML) is characterized by expression of the constitutively active Bcr-Abl tyrosine kinase. We have shown previously that the negative growth regulator, CCN3, is down-regulated as a result of Bcr-Abl kinase activity and that CCN3 has a reciprocal relationship of expression with BCR-ABL. We now show that CCN3 confers growth regulation in CML cells by causing growth inhibition and regaining sensitivity to the induction of apoptosis. The mode of CCN3 induced growth regulation was investigated in K562 CML cells using gene transfection and treatment with recombinant CCN3. Both strategies showed CCN3 regulated CML cell growth by reducing colony formation capacity, increasing apoptosis and reducing ERK phosphorylation. K562 cells stably transfected to express CCN3 showed enhanced apoptosis in response to treatment with the tyrosine kinase inhibitor, imatinib. Whilst CCN3 expression was low or undetectable in CML stem cells, primary CD34+ CML progenitors were responsive to treatment with recombinant CCN3. This study shows that CCN3 is an important growth regulator in haematopoiesis, abrogation of CCN3 expression enhances BCR-ABL dependent leukaemogenesis. CCN3 restores growth regulation, regains sensitivity to the induction of apoptosis and enhances imatinib cell kill in CML cells. CCN3 may provide an additional therapeutic strategy in the management of CML

    Combination of Two but Not Three Current Targeted Drugs Can Improve Therapy of Chronic Myeloid Leukemia

    Get PDF
    Chronic myeloid leukemia (CML) is a cancer of the hematopoietic system and has been treated with the drug Imatinib relatively successfully. Drug resistance, acquired by mutations, is an obstacle to success. Two additional drugs are now considered and could be combined with Imatinib to prevent resistance, Dasatinib and Nilotinib. While most mutations conferring resistance to one drug do not confer resistance to the other drugs, there is one mutation (T315I) that induces resistance against all three drugs. Using computational methods, the combination of two drugs is found to increase the probability of treatment success despite this cross-resistance. Combining more than two drugs, however, does not provide further advantages. We also explore possible combination therapies using drugs currently under development. We conclude that among the targeted drugs currently available for the treamtent of CML, only the two most effective ones should be used in combination for the prevention of drug resistance

    Frequencies of BCR-ABL1 fusion transcripts among Sudanese chronic myeloid leukaemia patients

    Get PDF
    The incidence of one or other rearrangement in chronic myeloid leukemia (CML) patients varies in different reported series. In this study we report the frequencies of BCR-ABL1 fusion transcript variants studied in 43 CML patients from Sudan. The study includes 46 Sudanese patients, three of which negative for the BCR-ABL1 fusion transcript. More than half of 43 positive patients showed b2a2 fusion transcript (53.5%), while (41.9%) showed b3a2 transcript and the remaining (4.6%) coexpression of b3a2/ b2a2 and b3a2/b2a2/e19a2. We detected neither coexpression of p210/p190 nor e1a2 alone. Male patients showed a tendency to express b2a2, while female tende to express b3a2 (p = 0.017). Moreover, a single nucleotide polymorphism was detected in BCR exon 13 in one out of four patients and this patient showed only b2a2 expression. In conclusion, we observed a significant correlation between sex and type of BCR-ABL1 transcript, an observation that deserves further investigation

    Quantitative assay for the detection of the V617F variant in the Janus kinase 2 (JAK2) gene using the Luminex xMAP technology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The availability of clinically valid biomarkers contribute to improve the diagnosis and clinical management of diseases. A valine-to-phenylalanine substitution at position 617 (V617F) in the Janus kinase 2 (JAK2) gene has been recently associated with key signaling abnormalities in the transduction of haemopoietic growth-factor receptors and is now considered as a useful clinical marker of myeloproliferative neoplasms. Several methods have recently been reported to detect the JAK2 V617F point mutation and show variable sensitivity.</p> <p>Methods</p> <p>Using the Luminex xMAP technology, we developed a quantitative assay to detect the JAK2V617F variant. The method was based on polymerase chain reaction (PCR) followed by hybridization to specific probes coupled with internally dyed microspheres. The assay comprises 3 steps: genomic DNA extraction, end point PCR reaction, direct hybridization of PCR fragments and quantification. It has been tested with different sources of nucleic acid.</p> <p>Results</p> <p>Applied to whole blood samples, this quantitative assay showed a limit of detection of 2%. A highly sensitive allele-specific primer extension reaction performed in parallel allowed to validate the results and to identify the specimens with values below 2%.</p> <p>Conclusion</p> <p>Direct hybridization assay using the Luminex xMAP technology allows sensitive quantification of JAK2V617F from blood spots. It is simple and can be easily performed in a clinical setting.</p

    Alu distribution and mutation types of cancer genes

    Get PDF
    Background: Alu elements are the most abundant retrotransposable elements comprising ~11% of the human genome. Many studies have highlighted the role that Alu elements have in genetic instability and how their contribution to the assortment of mutagenic events can lead to cancer. As of yet, little has been done to quantitatively assess the association between Alu distribution and genes that are causally implicated in oncogenesis.Results: We have investigated the effect of various Alu densities on the mutation type based classifications of cancer genes. In order to establish the direct relationship between Alus and the cancer genes of interest, genome wide Alu-related densities were measured using genes rather than the sliding windows of fixed length as the units. Several novel genomic features, such as the density of the adjacent Alu pairs and the number of Alu-Exon-Alu triplets, were developed in order to extend the investigation via the multivariate statistical analysis toward more advanced biological insight. In addition, we characterized the genome-wide intron Alu distribution with a mixture model that distinguished genes containing Alu elements from those with no Alus, and evaluated the gene-level effect of the 5\u27-TTAAAA motif associated with Alu insertion sites using a two-step regression analysis method.Conclusions: The study resulted in several novel findings worthy of further investigation. They include: (1) Recessive cancer genes (tumor suppressor genes) are enriched with Alu elements (p \u3c 0.01) compared to dominant cancer genes (oncogenes) and the entire set of genes in the human genome; (2) Alu-related genomic features can be used to cluster cancer genes into biological meaningful groups; (3) The retention of exon Alus has been restricted in the human genome development, and an upper limit to the chromosome-level exon Alu densities is suggested by the distribution profile; (4) For the genes with at least one intron Alu repeat in individual chromosomes, the intron Alu densities can be well fitted by a Gamma distribution; (5) The effect of the 5\u27-TTAAAA motif on Alu densities varies across different chromosomes

    European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia

    Get PDF
    The therapeutic landscape of chronic myeloid leukemia (CML) has profoundly changed over the past 7 years. Most patients with chronic phase (CP) now have a normal life expectancy. Another goal is achieving a stable deep molecular response (DMR) and discontinuing medication for treatment-free remission (TFR). The European LeukemiaNet convened an expert panel to critically evaluate and update the evidence to achieve these goals since its previous recommendations. First-line treatment is a tyrosine kinase inhibitor (TKI; imatinib brand or generic, dasatinib, nilotinib, and bosutinib are available first-line). Generic imatinib is the cost-effective initial treatment in CP. Various contraindications and side-effects of all TKIs should be considered. Patient risk status at diagnosis should be assessed with the new EUTOS long-term survival (ELTS)-score. Monitoring of response should be done by quantitative polymerase chain reaction whenever possible. A change of treatment is recommended when intolerance cannot be ameliorated or when molecular milestones are not reached. Greater than 10% BCR-ABL1 at 3 months indicates treatment failure when confirmed. Allogeneic transplantation continues to be a therapeutic option particularly for advanced phase CML. TKI treatment should be withheld during pregnancy. Treatment discontinuation may be considered in patients with durable DMR with the goal of achieving TFR

    Optimizing Combination Therapies with Existing and Future CML Drugs

    Get PDF
    Small-molecule inhibitors imatinib, dasatinib and nilotinib have been developed to treat Chromic Myeloid Leukemia (CML). The existence of a triple-cross-resistant mutation, T315I, has been a challenging problem, which can be overcome by finding new inhibitors. Many new compounds active against T315I mutants are now at different stages of development. In this paper we develop an algorithm which can weigh different combination treatment protocols according to their cross-resistance properties, and find the protocols with the highest probability of treatment success. This algorithm also takes into account drug toxicity by minimizing the number of drugs used, and their concentration. Although our methodology is based on a stochastic model of CML microevolution, the algorithm itself does not require measurements of any parameters (such as mutation rates, or division/death rates of cells), and can be used by medical professionals without a mathematical background. For illustration, we apply this algorithm to the mutation data obtained in [1], [2]

    A single-tube allele specific-polymerase chain reaction to detect T315I resistant mutation in chronic myeloid leukemia patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>BCR-ABL </it>kinase domain (KD) mutation is the major mechanism contributing to suboptimal response to tyrosine kinase inhibitors (TKI) in <it>BCR-ABL</it>-positive chronic myeloid leukemia (CML) patients. T315I mutation, as one of the most frequent KD mutations, has been shown to be strongly associated with TKI resistance and subsequent therapeutic failure. A simple and sensitive method is thus required to detect T315I mutation at the earliest stage.</p> <p>Methods</p> <p>A single-tube allele specific-polymerase chain reaction (AS-PCR) method was developed to detect T315I mutation in a mixture of normal and mutant alleles of varying dilutions. Denaturing high performance liquid chromatography (DHPLC) and direct sequencing were performed as a comparison to AS-PCR.</p> <p>Results</p> <p>T315I mutant bands were observed in the mixtures containing as low as 0.5-1% of mutant alleles by AS-PCR. The detection sensitivity of DHPLC was around 1.5-3% dilution whereas sequencing analysis was unable to detect below 6.25% dilution.</p> <p>Conclusion</p> <p>A single-tube AS-PCR is a rapid and sensitive screening method for T315I mutation. Detection of the most resistant leukemic clone in CML patients undergoing TKI therapy should be feasible with this simple and inexpensive method.</p
    corecore