11 research outputs found

    Mind the gap: connexins and cell–cell communication in the diabetic kidney

    Get PDF
    Connexins, assembled as a hexameric connexon, form a transmembrane hemichannel that provides a conduit for paracrine signalling of small molecules and ions to regulate the activity and function of adjacent cells. When hemichannels align and associate with similar channels on opposing cells, they form a continuous aqueous pore or gap junction, allowing the direct transmission of metabolic and electrical signals between coupled cells. Regulation of gap junction synthesis and channel activity is critical for cell function, and a number of diseases can be attributed to changes in the expression/function of these important proteins. Diabetic nephropathy is associated with several complex metabolic and inflammatory responses characterised by defects at the molecular, cellular and tissue level. In both type 1 and type 2 diabetes, glycaemic injury of the kidney is the leading cause of end-stage renal failure, a consequence of multiple aetiologies, including increased deposition of extracellular matrix, glomerular hyperfiltration, albuminuria and tubulointerstitial fibrosis. In diabetic nephropathy, loss of connexin mediated cell–cell communication within the nephron may represent an early sign of disease; however, our current knowledge of the role of connexins in the diabetic kidney is sparse. This review highlights recent evidence demonstrating that maintenance of connexin-mediated cell–cell communication could benefit region-specific renal function in diabetic nephropathy and suggests that these proteins should be viewed as a tantalising novel target for therapeutic intervention

    Phylogeny in Aid of the Present and Novel Microbial Lineages: Diversity in Bacillus

    Get PDF
    Bacillus represents microbes of high economic, medical and biodefense importance. Bacillus strain identification based on 16S rRNA sequence analyses is invariably limited to species level. Secondly, certain discrepancies exist in the segregation of Bacillus subtilis strains. In the RDP/NCBI databases, out of a total of 2611 individual 16S rDNA sequences belonging to the 175 different species of the genus Bacillus, only 1586 have been identified up to species level. 16S rRNA sequences of Bacillus anthracis (153 strains), B. cereus (211 strains), B. thuringiensis (108 strains), B. subtilis (271 strains), B. licheniformis (131 strains), B. pumilus (83 strains), B. megaterium (47 strains), B. sphaericus (42 strains), B. clausii (39 strains) and B. halodurans (36 strains) were considered for generating species-specific framework and probes as tools for their rapid identification. Phylogenetic segregation of 1121, 16S rDNA sequences of 10 different Bacillus species in to 89 clusters enabled us to develop a phylogenetic frame work of 34 representative sequences. Using this phylogenetic framework, 305 out of 1025, 16S rDNA sequences presently classified as Bacillus sp. could be identified up to species level. This identification was supported by 20 to 30 nucleotides long signature sequences and in silico restriction enzyme analysis specific to the 10 Bacillus species. This integrated approach resulted in identifying around 30% of Bacillus sp. up to species level and revealed that B. subtilis strains can be segregated into two phylogenetically distinct groups, such that one of them may be renamed

    TGFβ modulates cell-to-cell communication in early epithelial-to-mesenchymal transition

    Get PDF
    Aims/hypothesis A key pathology in diabetic nephropathy is tubulointerstitial fibrosis. The condition is characterised by increased deposition of the extracellular matrix, fibrotic scar formation and declining renal function, with the prosclerotic cytokine TGF-β1 mediating many of these catastrophic changes. Here we investigated whether TGF-β1-induced epithelial-to-mesenchymal transition (EMT) plays a role in alterations in cell adhesion, cell coupling and cell communication in the human renal proximal tubule. Methods Whole-cell and cell compartment abundance of E-cadherin, N-cadherin, snail, vimentin, β-catenin and connexin-43 was determined in human kidney cell line (HK)2 and human proximal tubule cells with or without TGF-β1, using western blotting and immunocytochemistry, followed by quantification by densitometry. The contribution of connexin-43 in proximal tubule cell communication was quantified using small interfering RNA knockdown, while dye-transfer was used to assess gap junctional intercellular communication (GJIC). Functional tethering was assessed by single-cell force spectroscopy with or without TGF-β1, or by immunoneutralisation of cadherin ligation. Results High glucose (25 mmol/l) increased the secretion of TGF-β1 from HK2 cells. Analysis confirmed early TGF-β1-induced morphological and phenotypical changes of EMT, with altered levels of adhesion and adherens junction proteins. These changes correlated with impaired cell adhesion and decreased tethering between coupled cells. Impaired E-cadherin-mediated adhesion reduced connexin-43 production and GJIC, these effects being mimicked by neutralisation of E-cadherin ligation. Upregulation of N-cadherin failed to restore adhesion or connexin-43-mediated GJIC. Conclusions/interpretation We provide compelling evidence that TGF-β1-induced EMT instigates a loss of E-cadherin, cell adhesion and ultimately of connexin-mediated cell communication in the proximal tubule under diabetic conditions; these changes occur ahead of overt signs of renal damage

    Urogenital schistosomiasis transmission on Unguja Island, Zanzibar: characterisation of persistent hot-spots

    Get PDF
    © The Author(s). 2016. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The attached file is the published version of the article
    corecore