9 research outputs found

    Forest landscape ecology and global change: an introduction

    Get PDF
    Forest landscape ecology examines broad-scale patterns and processes and their interactions in forested systems and informs the management of these ecosystems. Beyond being among the richest and the most complex terrestrial systems, forest landscapes serve society by providing an array of products and services and, if managed properly, can do so sustainably. In this chapter, we provide an overview of the field of forest landscape ecology, including major historical and present topics of research, approaches, scales, and applications, particularly those concerning edges, fragmentation, connectivity, disturbance, and biodiversity. In addition, we discuss causes of change in forest landscapes, particularly land-use and management changes, and the expected structural and functional consequences that may result from these drivers. This chapter is intended to set the context and provide an overview for the remainder of the book and poses a broad set of questions related to forest landscape ecology and global change that need answers

    Comparative analyses of the complete genome sequences of Pierce's disease and citrus variegated chlorosis strains of Xylella fastidiosa

    Get PDF
    Xylella fastidiosa is a xylem-dwelling, insect-transmitted, gamma-proteobacterium that causes diseases in many plants, including grapevine, citrus, periwinkle, almond, oleander, and coffee. X. fastidiosa has an unusually broad host range, has an extensive geographical distribution throughout the American continent, and induces diverse disease phenotypes. Previous molecular analyses indicated three distinct groups of X.fastidiosa isolates that were expected to be genetically divergent. Here we report the genome sequence of X. fastidiosa (Temecula strain), isolated from a naturally infected grapevine with Pierce's disease (PD) in a wine-grape-growing region of California. Comparative analyses with a previously sequenced X.fastidiosa strain responsible for citrus variegated chlorosis (CVC) revealed that 98% of the PD X.fastidiosa Temecula genes are shared with the CVC X. fastidiosa strain 9a5c genes. Furthermore, the average amino acid identity of the open reading frames in the strains is 95.7%. Genomic differences are limited to phage-associated chromosomal rearrangements and deletions that also account for the strain-specific genes present in each genome. Genomic islands, one in each genome, were identified, and their presence in other X.fastidiosa strains was analyzed. We conclude that these two organisms have identical metabolic functions and are likely to use a common set of genes in plant colonization and pathogenesis, permitting convergence of functional genomic strategies.18531018102

    Esplenectomia vídeo-laparoscópica para púrpura trombocitopênica imune: técnica e resultados

    No full text
    OBJETIVO: Avaliar os resultados da esplenectomia vídeo-laparoscópica para pacientes portadores de Púrpura Trombocitopênica Imune. MÉTODO: Estudo prospectivo de 17 pacientes portadores de Púrpura Trombocitopênica Imune submetidos a esplenectomia vídeo-laparoscópica com uso de três trocartes e ligadura com fio do hilo esplênico, no Hospital Universitário Clementino Fraga Filho - UFRJ, Rio de Janeiro, no período de janeiro de 2001 a julho de 2003. Foram avaliadas as taxas de conversão, transfusão e de remissão da doença, os tempos operatório, anestésico e de internação, além das incidências de complicações e de baços acessórios. RESULTADOS: Nos 17 pacientes submetidos à técnica, não houve conversão para cirurgia aberta. Complicações ocorreram em três pacientes (17,6%): um hematoma subcutâneo, um tecido esplênico residual, um pseudocisto pancreático. Reoperação foi necessária em um paciente, 24 meses após a esplenectomia, para retirada de tecido esplênico residual, sem plaquetopenia. Foi necessária a colocação adicional de um trocarte de 5mm em quatro pacientes. Não houve óbitos. O tempo operatório médio foi de 132,9min e o tempo médio de internação de 2,53 dias. Foi necessária transfusão de plaquetas em dois pacientes (11,8%). Baço acessório foi encontrado em quatro pacientes (23,5%). Responderam favoravelmente à esplenectomia 13 pacientes (76,5%), ocorrendo nenhuma resposta ou não duradoura em quatro pacientes (23,5%). CONCLUSÕES: Cuidados no per- operatório são importantes para evitar a disseminação de tecido esplênico, a não identificação de baços acessórios e a técnica mais anatômica para evitar lesões pancreáticas, hemorragia e conversão. Os pacientes com PTI respondem em proporções semelhantes à cirurgia aberta comparados com dados da literatura, com menor índice de complicações e menor tempo de internação. Os resultados obtidos sugerem que a esplenectomia laparoscópica é segura e efetiva, tornando-se o tratamento de escolha para PTI com indicação cirúrgica

    Antiviral therapy against chronic hepatitis B in Brazil: high rates of lamivudine resistance mutations and correlation with HBV genotypes

    No full text
    The effectiveness of antiviral treatments of chronic hepatitis B has been poorly studied in Brazil. Here, hepatitis B virus (HBV) DNA positivity, drug resistance mutations and their association with HBV genotypes were evaluated in chronically HBV-infected patients under different drug regimens in Brazil. The study involved 129 patients under interferon or nucleos(t)ide analogue therapy for a median treatment time of 12 months. One hundred and five (81%) of these patients were treated with lamivudine (LAM), either in monotherapy or in combination with newer drugs, such as entecavir (ETV) or tenofovir (TDF). High (37.5-100%) rates of HBV DNA positivity were observed with all but one drug regimen (LAM + ETV). However, patients that were treated with ETV alone, TDF alone or with LAM combination therapies had a mean viral load that was 3-4 log lower than patients treated with LAM monotherapy. Of the patients treated with LAM, 47% developed resistance mutations. HBV genotypes A (59.1%), D (30.3%) and F (9.1%) were found. There was no association between the presence of LAM resistance mutations and genotypes, HBeAg status or treatment duration. Nevertheless, the rtM204V mutation was observed more frequently (12/13, 92%) in genotype A than in the others (p = 0.023). Six out of nine isolates that contained the rtM204I mutation belonged to genotype D and half of them displayed a single mutation. Genotype D isolates with the rtM204V variant preferentially displayed a triple mutation, while genotype A preferentially displayed a double mutation (p = 0.04)

    Comparison of the genomes of two Xanthomonas pathogens with differing host specificities

    No full text
    The genus Xanthomonas is a diverse and economically important group of bacterial phytopathogens, belonging to the gamma-subdivision of the Proteobacteria. Xanthomonas axonopodis pv. citri (Xac) causes citrus canker, which affects most commercial citrus cultivars, resulting in significant losses worldwide. Symptoms include canker lesions, leading to abscission of fruit and leaves and general tree decline(1). Xanthomonas campestris pv. campestris (Xcc) causes black rot, which affects crucifers such as Brassica and Arabidopsis. Symptoms include marginal leaf chlorosis and darkening of vascular tissue, accompanied by extensive wilting and necrosis(2). Xanthomonas campestris pv. campestris is grown commercially to produce the exopolysaccharide xanthan gum, which is used as a viscosifying and stabilizing agent in many industries(3). Here we report and compare the complete genome sequences of Xac and Xcc. Their distinct disease phenotypes and host ranges belie a high degree of similarity at the genomic level. More than 80% of genes are shared, and gene order is conserved along most of their respective chromosomes. We identified several groups of strain-specific genes, and on the basis of these groups we propose mechanisms that may explain the differing host specificities and pathogenic processes.417688745946

    Comparative analyses of the complete genome sequences of Pierce's disease and citrus variegated chlorosis strains of Xylella fastidiosa

    No full text
    Xylella fastidiosa is a xylem-dwelling, insect-transmitted, gamma-proteobacterium that causes diseases in many plants, including grapevine, citrus, periwinkle, almond, oleander, and coffee. X. fastidiosa has an unusually broad host range, has an extensive geographical distribution throughout the American continent, and induces diverse disease phenotypes. Previous molecular analyses indicated three distinct groups of X.fastidiosa isolates that were expected to be genetically divergent. Here we report the genome sequence of X. fastidiosa (Temecula strain), isolated from a naturally infected grapevine with Pierce's disease (PD) in a wine-grape-growing region of California. Comparative analyses with a previously sequenced X.fastidiosa strain responsible for citrus variegated chlorosis (CVC) revealed that 98% of the PD X.fastidiosa Temecula genes are shared with the CVC X. fastidiosa strain 9a5c genes. Furthermore, the average amino acid identity of the open reading frames in the strains is 95.7%. Genomic differences are limited to phage-associated chromosomal rearrangements and deletions that also account for the strain-specific genes present in each genome. Genomic islands, one in each genome, were identified, and their presence in other X.fastidiosa strains was analyzed. We conclude that these two organisms have identical metabolic functions and are likely to use a common set of genes in plant colonization and pathogenesis, permitting convergence of functional genomic strategies

    Comparison of the genomes of two Xanthomonas pathogens with differing host specificities

    No full text
    The genus Xanthomonas is a diverse and economically important group of bacterial phytopathogens, belonging to the gamma-subdivision of the Proteobacteria. Xanthomonas axonopodis pv. citri (Xac) causes citrus canker, which affects most commercial citrus cultivars, resulting in significant losses worldwide. Symptoms include canker lesions, leading to abscission of fruit and leaves and general tree decline(1). Xanthomonas campestris pv. campestris (Xcc) causes black rot, which affects crucifers such as Brassica and Arabidopsis. Symptoms include marginal leaf chlorosis and darkening of vascular tissue, accompanied by extensive wilting and necrosis(2). Xanthomonas campestris pv. campestris is grown commercially to produce the exopolysaccharide xanthan gum, which is used as a viscosifying and stabilizing agent in many industries(3). Here we report and compare the complete genome sequences of Xac and Xcc. Their distinct disease phenotypes and host ranges belie a high degree of similarity at the genomic level. More than 80% of genes are shared, and gene order is conserved along most of their respective chromosomes. We identified several groups of strain-specific genes, and on the basis of these groups we propose mechanisms that may explain the differing host specificities and pathogenic processes
    corecore