305 research outputs found

    A novel role of dendritic gap junction and mechanisms underlying its interaction with thalamocortical conductance in fast spiking inhibitory neurons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known about the roles of dendritic gap junctions (GJs) of inhibitory interneurons in modulating temporal properties of sensory induced responses in sensory cortices. Electrophysiological dual patch-clamp recording and computational simulation methods were used in combination to examine a novel role of GJs in sensory mediated feed-forward inhibitory responses in barrel cortex layer IV and its underlying mechanisms.</p> <p>Results</p> <p>Under physiological conditions, excitatory post-junctional potentials (EPJPs) interact with thalamocortical (TC) inputs within an unprecedented few milliseconds (i.e. over 200 Hz) to enhance the firing probability and synchrony of coupled fast-spiking (FS) cells. Dendritic GJ coupling allows fourfold increase in synchrony and a significant enhancement in spike transmission efficacy in excitatory spiny stellate cells. The model revealed the following novel mechanisms: <b><it>1) </it></b>rapid capacitive current (I<sub>cap</sub>) underlies the activation of voltage-gated sodium channels; <b><it>2) </it></b>there was less than 2 milliseconds in which the I<sub>cap </sub>underlying TC input and EPJP was coupled effectively; <b><it>3) </it></b>cells with dendritic GJs had larger input conductance and smaller membrane response to weaker inputs; <b><it>4) </it></b>synchrony in inhibitory networks by GJ coupling leads to reduced sporadic lateral inhibition and increased TC transmission efficacy.</p> <p>Conclusion</p> <p>Dendritic GJs of neocortical inhibitory networks can have very powerful effects in modulating the strength and the temporal properties of sensory induced feed-forward inhibitory and excitatory responses at a very high frequency band (>200 Hz). Rapid capacitive currents are identified as main mechanisms underlying interaction between two transient synaptic conductances.</p

    Borna disease virus (BDV) circulating immunocomplex positivity in addicted patients in the Czech Republic: a prospective cohort analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Borna disease virus (BDV) is an RNA virus belonging to the family Bornaviridae. Borna disease virus is a neurotropic virus that causes changes in mood, behaviour and cognition. BDV causes persistent infection of the central nervous system. Immune changes lead to activation of infection. Alcohol and drug dependence are associated with immune impairment.</p> <p>Methods</p> <p>We examined the seropositivity of BDV circulating immunocomplexes (CIC) in patients with alcohol and drug dependence and healthy individuals (blood donors). We examined 41 addicted patients for the presence of BDV CIC in the serum by ELISA at the beginning of detoxification, and after eight weeks of abstinence. This is the first such study performed in patients with alcohol and drug dependence.</p> <p>Results</p> <p>BDV CIC positivity was detected in 36.59% of addicted patients on day 0 and in 42.86% on day 56. The control group was 37.3% positive. However, we did not detect higher BDV CIC positivity in addicted patients in comparison with blood donors (p = 0.179). The significantly higher level of BDV CIC was associated with lower levels of GGT (gamma glutamyl transferase) (p = 0.027) and approached statistical significance with the lower age of addicted patients (p = 0.064). We did not find any association between BDV CIC positivity and other anamnestic and demographic characteristics.</p> <p>Conclusions</p> <p>In our study addicted patients did not have significantly higher levels of BDV CIC than the control group. The highest levels of BDV CIC were detected in patients with lower levels of GGT and a lower age.</p> <p>Trial registration</p> <p>This study was approved by the ethical committee of the University Hospital Medical Faculty of Charles University in Pilsen, Czech Republic (registration number 303/2001).</p

    Regulation of Pax6 by CTCF during Induction of Mouse ES Cell Differentiation

    Get PDF
    Pax6 plays an important role in embryonic cell (ES) differentiation during embryonic development. Expression of Pax6 undergoes from a low level to high levels following ES cell differentiation to neural stem cells, and then fades away in most of the differentiated cell types. There is a limited knowledge concerning how Pax6 is regulated in ES cell differentiation. We report that Pax6 expression in mouse ES cells was controlled by CCCTC binding factor (CTCF) through a promoter repression mechanism. Pax6 expression was significantly enhanced while CTCF activity was kept in the constant during ES cell differentiation to radial glial cells. Instead, the interaction of CTCF with Pax6 gene was regulated by decreased CTCF occupancy in its binding motifs upstream from Pax6 P0 promoter following the course of ES cell differentiation. Reduced occupancy of CTCF in the binding motif region upstream from the P0 promoter was due to increased DNA methylations in the CpG sites identified in the region. Furthermore, changes in DNA methylation levels in vitro and in vivo effectively altered methylation status of these identified CpG sites, which affected ability of CTCF to interact with the P0 promoter, resulting in increases in Pax6 expression. We conclude that there is an epigenetic mechanism involving regulations of Pax6 gene during ES cell differentiation to neural stem cells, which is through increases or decreases in methylation levels of Pax6 gene to effectively alter the ability of CTCF in control of Pax6 expression, respectively

    Mapping the Interactions between a RUN Domain from DENND5/Rab6IP1 and Sorting Nexin 1

    Get PDF
    Eukaryotic cells have developed a diverse repertoire of Rab GTPases to regulate vesicle trafficking pathways. Together with their effector proteins, Rabs mediate various aspects of vesicle formation, tethering, docking and fusion, but details of the biological roles elicited by effectors are largely unknown. Human Rab6 is involved in the trafficking of vesicles at the level of Golgi via interactions with numerous effector proteins. We have previously determined the crystal structure of Rab6 in complex with DENND5, alternatively called Rab6IP1, which comprises two RUN domains (RUN1 and RUN2) separated by a PLAT domain. The structure of Rab6/RUN1-PLAT (Rab6/R1P) revealed the molecular basis for Golgi recruitment of DENND5 via the RUN1 domain, but the functional role of the RUN2 domain has not been well characterized. Here we show that a soluble DENND5 construct encompassing the RUN2 domain binds to the N-terminal region of sorting nexin 1 by surface plasmon resonance analyses

    Secreted Frizzled-related protein-1 is a negative regulator of androgen receptor activity in prostate cancer

    Get PDF
    Secreted Frizzled-related protein-1 (sFRP1) associates with Wnt proteins and its loss can lead to activation of Wnt/β-catenin signalling. It is frequently downregulated in cancer, including prostate cancer, but its function in prostate cancer is unclear because it can increase proliferation of prostate epithelial cells. We investigated the function of sFRP1 in androgen-dependent prostate cancer and found that sFRP1 inhibited androgen receptor (AR) transcriptional activity. In addition, sFRP1 inhibited the proliferation of androgen-dependent LNCaP cells but not of an androgen-independent subline LNCaP-r, suggesting a role in androgen-dependent growth. The inhibition of AR by sFRP1 was unaffected by co-expression of Wnt3a, stabilised β-catenin or β-catenin shRNA, suggesting it does not involve Wnt/β-catenin signalling. Wnt5a also inhibited AR and expression of Wnt5a and sFRP1 together did not further inhibit AR, suggesting that Wnt5a and sFRP1 activate the same signal(s) to inhibit AR. However, sFRP1 inhibition of AR was unaffected by inhibitors of kinases involved in Wnt/Ca2+ and Wnt/planar cell polarity non-canonical Wnt signalling. Interestingly, the cysteine-rich domain of sFRP1 interacted with Frizzled receptors expressed in prostate cancer cells, suggesting that sFRP1/Frizzled complexes activate a signal that leads to repression of AR. Taken together, these observations highlight the function of β-catenin-independent Wnt signalling in the control of AR activity and provide one explanation for sFRP1 downregulation in prostate cancer

    Long-range transport of airborne microbes over the global tropical and subtropical ocean

    Get PDF
    The atmosphere plays a fundamental role in the transport of microbes across the planet but it is often neglected as a microbial habitat. Although the ocean represents two thirds of the Earth’s surface, there is little information on the atmospheric microbial load over the open ocean. Here we provide a global estimate of microbial loads and air-sea exchanges over the tropical and subtropical oceans based on the data collected along the Malaspina 2010 Circumnavigation Expedition. Total loads of airborne prokaryotes and eukaryotes were estimated at 2.2 × 1021 and 2.1 × 1021 cells, respectively. Overall 33–68% of these microorganisms could be traced to a marine origin, being transported thousands of kilometres before re-entering the ocean. Moreover, our results show a substantial load of terrestrial microbes transported over the oceans, with abundances declining exponentially with distance from land and indicate that islands may act as stepping stones facilitating the transoceanic transport of terrestrial microbes.En prens

    Dose-escalation study of weekly irinotecan and daily carboplatin with concurrent thoracic radiotherapy for unresectable stage III non-small cell lung cancer

    Get PDF
    Dose-escalation study was performed to evaluate the maximum tolerated dose, recommended dose and toxicity profile of weekly irinotecan with daily carboplatin and concurrent thoracic radiotherapy in patients with locally advanced non-small-cell lung cancer. Thirty-one previously untreated patients with unresectable stage III non-small-cell lung cancer were enrolled in this study. Patients received weekly irinotecan plus carboplatin (20 mg m−2 daily for 5 days a week) for 4 weeks and thoracic radiotherapy (60 Gy in 30 fractions). The irinotecan dose was escalated from 30 mg m−2 in increments of 10 mg m−2. Four irinotecan dose levels were given and 30 patients were assessable. Their median age was 62 years (range: 52–72 years), 28 had a performance status of 0–1 and two had a performance status of 2, 12 had stage IIIA disease and 18 had IIIB disease. There were 19 squamous cell carcinomas, 10 adenocarcinomas, and one large cell carcinoma. The dose-limiting toxicities were pneumonitis, esophagitis, thrombocytopenia and neutropenia. The maximum tolerated dose of irinotecan was 60 mg m−2, with two patients developing grade 4 pulmonary toxicity and one patient died of pneumonitis (grade 5). The recommended dose of irinotecan was 50 mg m−2. Other grade 3 or 4 toxicities were nausea and vomiting. Three patients achieved complete remission and 15 had partial remission, for an objective response rate of 60.0%. The median survival time was 14.9 months, and the 1- and 2-year survival rates were 51.6% and 34.2%, respectively. The study concluded that the major toxicity of this regimen was pneumonitis. This therapy may be active against unresectable non-small-cell lung cancer and a phase II study is warranted

    Prostaglandin signalling regulates ciliogenesis by modulating intraflagellar transport

    Get PDF
    Cilia are microtubule-based organelles that mediate signal transduction in a variety of tissues. Despite their importance, the signalling cascades that regulate cilium formation remain incompletely understood. Here we report that prostaglandin signalling affects ciliogenesis by regulating anterograde intraflagellar transport (IFT). Zebrafish leakytail (lkt) mutants show ciliogenesis defects, and the lkt locus encodes an ATP-binding cassette transporter (ABCC4). We show that Lkt/ABCC4 localizes to the cell membrane and exports prostaglandin E2 (PGE2), a function that is abrogated by the Lkt/ABCC4T804M mutant. PGE2 synthesis enzyme cyclooxygenase-1 and its receptor, EP4, which localizes to the cilium and activates the cyclic-AMP-mediated signalling cascade, are required for cilium formation and elongation. Importantly, PGE2 signalling increases anterograde but not retrograde velocity of IFT and promotes ciliogenesis in mammalian cells. These findings lead us to propose that Lkt/ABCC4-mediated PGE2 signalling acts through a ciliary G-protein-coupled receptor, EP4, to upregulate cAMP synthesis and increase anterograde IFT, thereby promoting ciliogenesis
    corecore