3,686 research outputs found

    See-saw neutrino masses and large mixing angles in the vortex background on a sphere

    Full text link
    In the vortex background on a sphere, a single 6-dimensional fermion family gives rise to 3 zero-modes in the 4-dimensional point of view, which may explain the replication of families in the Standard Model. Previously, it had been shown that realistic hierarchical mass and mixing patterns can be reproduced for the quarks and the charged leptons. Here, we show that the addition of a single heavy 6-dimensional field that is gauge singlet, unbound to the vortex, and embedded with a bulk Majorana mass enables to generate 4D Majorana masses for the light neutrinos through the see-saw mechanism. The scheme is very predictive. The hierarchical structure of the fermion zero-modes leads automatically to an inverted pseudo-Dirac mass pattern, and always predicts one maximal angle in the neutrino see-saw matrix. It is possible to obtain a second large mixing angle from either the charged lepton or the neutrino sector, and we demonstrate that this model can fit all observed data in neutrino oscillations experiments. Also, U_{e3} is found to be of the order ~0.1.Comment: 23 pages, 1 figur

    A Geometric Approach to CP Violation: Applications to the MCPMFV SUSY Model

    Get PDF
    We analyze the constraints imposed by experimental upper limits on electric dipole moments (EDMs) within the Maximally CP- and Minimally Flavour-Violating (MCPMFV) version of the MSSM. Since the MCPMFV scenario has 6 non-standard CP-violating phases, in addition to the CP-odd QCD vacuum phase \theta_QCD, cancellations may occur among the CP-violating contributions to the three measured EDMs, those of the Thallium, neutron and Mercury, leaving open the possibility of relatively large values of the other CP-violating observables. We develop a novel geometric method that uses the small-phase approximation as a starting point, takes the existing EDM constraints into account, and enables us to find maximal values of other CP-violating observables, such as the EDMs of the Deuteron and muon, the CP-violating asymmetry in b --> s \gamma decay, and the B_s mixing phase. We apply this geometric method to provide upper limits on these observables within specific benchmark supersymmetric scenarios, including extensions that allow for a non-zero \theta_QCD.Comment: 34 pages, 16 eps figures, to appear in JHE

    Anatomy of quantum chaotic eigenstates

    Get PDF
    The eigenfunctions of quantized chaotic systems cannot be described by explicit formulas, even approximate ones. This survey summarizes (selected) analytical approaches used to describe these eigenstates, in the semiclassical limit. The levels of description are macroscopic (one wants to understand the quantum averages of smooth observables), and microscopic (one wants informations on maxima of eigenfunctions, "scars" of periodic orbits, structure of the nodal sets and domains, local correlations), and often focusses on statistical results. Various models of "random wavefunctions" have been introduced to understand these statistical properties, with usually good agreement with the numerical data. We also discuss some specific systems (like arithmetic ones) which depart from these random models.Comment: Corrected typos, added a few references and updated some result

    Gauge-theoretic invariants for topological insulators: A bridge between Berry, Wess-Zumino, and Fu-Kane-Mele

    Full text link
    We establish a connection between two recently-proposed approaches to the understanding of the geometric origin of the Fu-Kane-Mele invariant FKMZ2\mathrm{FKM} \in \mathbb{Z}_2, arising in the context of 2-dimensional time-reversal symmetric topological insulators. On the one hand, the Z2\mathbb{Z}_2 invariant can be formulated in terms of the Berry connection and the Berry curvature of the Bloch bundle of occupied states over the Brillouin torus. On the other, using techniques from the theory of bundle gerbes it is possible to provide an expression for FKM\mathrm{FKM} containing the square root of the Wess-Zumino amplitude for a certain U(N)U(N)-valued field over the Brillouin torus. We link the two formulas by showing directly the equality between the above mentioned Wess-Zumino amplitude and the Berry phase, as well as between their square roots. An essential tool of independent interest is an equivariant version of the adjoint Polyakov-Wiegmann formula for fields T2U(N)\mathbb{T}^2 \to U(N), of which we provide a proof employing only basic homotopy theory and circumventing the language of bundle gerbes.Comment: 23 pages, 1 figure. To appear in Letters in Mathematical Physic

    Persistence of magnetic field driven by relativistic electrons in a plasma

    Full text link
    The onset and evolution of magnetic fields in laboratory and astrophysical plasmas is determined by several mechanisms, including instabilities, dynamo effects and ultra-high energy particle flows through gas, plasma and interstellar-media. These processes are relevant over a wide range of conditions, from cosmic ray acceleration and gamma ray bursts to nuclear fusion in stars. The disparate temporal and spatial scales where each operates can be reconciled by scaling parameters that enable to recreate astrophysical conditions in the laboratory. Here we unveil a new mechanism by which the flow of ultra-energetic particles can strongly magnetize the boundary between the plasma and the non-ionized gas to magnetic fields up to 10-100 Tesla (micro Tesla in astrophysical conditions). The physics is observed from the first time-resolved large scale magnetic field measurements obtained in a laser wakefield accelerator. Particle-in-cell simulations capturing the global plasma and field dynamics over the full plasma length confirm the experimental measurements. These results open new paths for the exploration and modelling of ultra high energy particle driven magnetic field generation in the laboratory

    Interval valued (\in,\ivq)-fuzzy filters of pseudo BLBL-algebras

    Full text link
    We introduce the concept of quasi-coincidence of a fuzzy interval value with an interval valued fuzzy set. By using this new idea, we introduce the notions of interval valued (\in,\ivq)-fuzzy filters of pseudo BLBL-algebras and investigate some of their related properties. Some characterization theorems of these generalized interval valued fuzzy filters are derived. The relationship among these generalized interval valued fuzzy filters of pseudo BLBL-algebras is considered. Finally, we consider the concept of implication-based interval valued fuzzy implicative filters of pseudo BLBL-algebras, in particular, the implication operators in Lukasiewicz system of continuous-valued logic are discussed

    Experimental Measurement of the Berry Curvature from Anomalous Transport

    Full text link
    Geometrical properties of energy bands underlie fascinating phenomena in a wide-range of systems, including solid-state materials, ultracold gases and photonics. Most famously, local geometrical characteristics like the Berry curvature can be related to global topological invariants such as those classifying quantum Hall states or topological insulators. Regardless of the band topology, however, any non-zero Berry curvature can have important consequences, such as in the semi-classical evolution of a wave packet. Here, we experimentally demonstrate for the first time that wave packet dynamics can be used to directly map out the Berry curvature. To this end, we use optical pulses in two coupled fibre loops to study the discrete time-evolution of a wave packet in a 1D geometrical "charge" pump, where the Berry curvature leads to an anomalous displacement of the wave packet under pumping. This is both the first direct observation of Berry curvature effects in an optical system, and, more generally, the proof-of-principle demonstration that semi-classical dynamics can serve as a high-resolution tool for mapping out geometrical properties

    Constitutive cytoplasmic localization of p21Waf1/Cip1 affects the apoptotic process in monocytic leukaemia

    Get PDF
    In the present study, we analysed the expression and localization of p21Waf1/Cip1 in normal and malignant haematopoietic cells. We demonstrate that in normal monocytic cells, protein kinase C (PKC)-induced p21 gene activation, which is nuclear factor-κB (NF-κB) independent, results in predominantly cytoplasmic localized p21 protein. In acute monocytic leukaemia (M4, M5), monocytic blasts (N=12) show constitutive cytoplasmic p21 expression in 75% of the cases, while in myeloid leukaemic blasts (N=10), low nuclear and cytoplasmic localization of p21 could be detected, which is also PKC dependent. Constitutive p21 expression in monocytic leukaemia might have important antiapoptotic functions. This is supported by the finding that in U937 cells overexpressing p21, VP16-induced apoptosis is significantly reduced (20.0±0.9 vs 55.8±3.8%, P<0.01, N=5), reflected by a reduced phosphorylation of p38 and JNK. Similarly, AML blasts with high cytoplasmic p21 were less sensitive to VP16-induced apoptosis as compared to AML cases with low or undetectable p21 expression (42.25 vs 12.3%, P<0.01). Moreover, complex formation between p21 and ASK1 could be demonstrated in AML cells, by means of coimmunoprecipitation. In summary, these results indicate that p21 has an antiapoptotic role in monocytic leukaemia, and that p21 expression is regulated in a PKC-dependent and NF-κB independent manner.

    Sensing electric fields using single diamond spins

    Full text link
    The ability to sensitively detect charges under ambient conditions would be a fascinating new tool benefitting a wide range of researchers across disciplines. However, most current techniques are limited to low-temperature methods like single-electron transistors (SET), single-electron electrostatic force microscopy and scanning tunnelling microscopy. Here we open up a new quantum metrology technique demonstrating precision electric field measurement using a single nitrogen-vacancy defect centre(NV) spin in diamond. An AC electric field sensitivity reaching ~ 140V/cm/\surd Hz has been achieved. This corresponds to the electric field produced by a single elementary charge located at a distance of ~ 150 nm from our spin sensor with averaging for one second. By careful analysis of the electronic structure of the defect centre, we show how an applied magnetic field influences the electric field sensing properties. By this we demonstrate that diamond defect centre spins can be switched between electric and magnetic field sensing modes and identify suitable parameter ranges for both detector schemes. By combining magnetic and electric field sensitivity, nanoscale detection and ambient operation our study opens up new frontiers in imaging and sensing applications ranging from material science to bioimaging
    corecore