2,232 research outputs found

    An optimization model for the US Air-Traffic System

    Get PDF
    A systematic approach for monitoring U.S. air traffic was developed in the context of system-wide planning and control. Towards this end, a network optimization model with nonlinear objectives was chosen as the central element in the planning/control system. The network representation was selected because: (1) it provides a comprehensive structure for depicting essential aspects of the air traffic system, (2) it can be solved efficiently for large scale problems, and (3) the design can be easily communicated to non-technical users through computer graphics. Briefly, the network planning models consider the flow of traffic through a graph as the basic structure. Nodes depict locations and time periods for either individual planes or for aggregated groups of airplanes. Arcs define variables as actual airplanes flying through space or as delays across time periods. As such, a special case of the network can be used to model the so called flow control problem. Due to the large number of interacting variables and the difficulty in subdividing the problem into relatively independent subproblems, an integrated model was designed which will depict the entire high level (above 29000 feet) jet route system for the 48 contiguous states in the U.S. As a first step in demonstrating the concept's feasibility a nonlinear risk/cost model was developed for the Indianapolis Airspace. The nonlinear network program --NLPNETG-- was employed in solving the resulting test cases. This optimization program uses the Truncated-Newton method (quadratic approximation) for determining the search direction at each iteration in the nonlinear algorithm. It was shown that aircraft could be re-routed in an optimal fashion whenever traffic congestion increased beyond an acceptable level, as measured by the nonlinear risk function

    Integrated risk/cost planning models for the US Air Traffic system

    Get PDF
    A prototype network planning model for the U.S. Air Traffic control system is described. The model encompasses the dual objectives of managing collision risks and transportation costs where traffic flows can be related to these objectives. The underlying structure is a network graph with nonseparable convex costs; the model is solved efficiently by capitalizing on its intrinsic characteristics. Two specialized algorithms for solving the resulting problems are described: (1) truncated Newton, and (2) simplicial decomposition. The feasibility of the approach is demonstrated using data collected from a control center in the Midwest. Computational results with different computer systems are presented, including a vector supercomputer (CRAY-XMP). The risk/cost model has two primary uses: (1) as a strategic planning tool using aggregate flight information, and (2) as an integrated operational system for forecasting congestion and monitoring (controlling) flow throughout the U.S. In the latter case, access to a supercomputer is required due to the model's enormous size

    Tax planning for estates

    Get PDF

    New consolidated return regulations

    Get PDF

    Reactions of (-)-sparteine with alkali metal HMDS complexes : conventional meets the unconventional

    Get PDF
    Conventional (-)-sparteine adducts of lithium and sodium 1,1,1,3,3,3-hexamethyldisilazide (HMDS) were prepared and characterised, along with an unexpected and unconventional hydroxyl-incorporated sodium sodiate, [(-)-sparteine·Na(-HMDS)Na·(-)-sparteine]+[Na4(-HMDS)4(OH)]--the complex anion of which is the first inverse crown ether anion

    Properties of the Scalar Universal Equations

    Full text link
    The variational properties of the scalar so--called ``Universal'' equations are reviewed and generalised. In particular, we note that contrary to earlier claims, each member of the Euler hierarchy may have an explicit field dependence. The Euler hierarchy itself is given a new interpretation in terms of the formal complex of variational calculus, and is shown to be related to the algebra of distinguished symmetries of the first source form.Comment: 15 pages, LaTeX articl

    On improving pension product design

    Get PDF

    Children’s Act Evaluation and Emotion Attribution Reasoning Regarding Different Moral Transgressions

    Get PDF
    This study investigated patterns of reasoning regarding different types of moral transgressions and different measures of moral development in children 6–8 years of age (N = 130). The findings documented different patterns of reasoning for each measure and for transgressions including different moral principles. Children distinguished between their understanding of their emotional response to a transgression and the moral violation that has occurred, using much more moral reasoning when justifying act evaluations and much more self-interest reasoning when justifying emotion attributions. Children also differentiated between different types of moral violations—that is, transgressions including different moral principles. Stories about others’ welfare elicited reasoning related to others’ welfare, stories about fairness elicited reasoning related to equality/rights/fairness, and a multifaceted story elicited both types of moral reasoning
    • 

    corecore