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Abstract

The paper provides some guidelines to individuals with defined contribution (DC) pension

plans on how to manage pension savings both before and after retirement. We argue that deci-

sions regarding investment, annuity payments, and the size of death sum should not only depend

on the individual’s age (or time left to retirement), nor should they solely depend on the risk

preferences, but should also capture: 1) economical characteristics - such as current value on

the pension savings account, expected pension contributions (mandatory and voluntary), and

expected income after retirement (e.g. retirement state pension), and 2) personal characteris-

tics - such as risk aversion, lifetime expectancy, preferable payout profile, bequest motive, and

preferences on portfolio composition. Specifically, the decisions are optimal under the expected

CRRA utility function and are subject to the constraints characterizing the individual.

The problem is solved via a model that combines two optimization approaches: stochastic op-

timal control and multi-stage stochastic programming. The first method is common in financial

and actuarial literature, but produces theoretical results. However, the latter, which is char-

acteristic for operations research, has highly practical applications. We present the operations

research methods which have potential to stimulate new thinking and add to actuarial practice.
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1 Introduction

Recent years have seen a decided worldwide shift from defined benefits (DB) pension plans towards

defined contribution (DC). The number of participants in DC plans is quickly expanding because

these plans are not only easier and cheaper to administer, but also more transparent and more

flexible. Furthermore they can better capture the individual’s needs. However, a primary problem

is that the participants often do not know how to manage their saving and investment decisions.

In some countries, such as the U.S., most DC decisions are made by the individual with little

advice from the employer. In contrast, in countries such as Denmark, the sponsoring organizations,

including life insurers, suggest a dynamic investment strategy suitable to the individual’s age and

risk preferences. Individuals in most of the countries also have to decide on how to spend the amount

accumulated on their pension savings account. Should they follow a certain withdrawal rate rule,

or should they purchase annuities that will provide with regular payments during retirement? This

task is not easy, especially when life insurers offer a wide variety of annuity products (e.g. fixed or

variable, deferred or immediate, term or whole-life). How can the individuals know, which product

is best for them?

There is one more decision they have to keep in mind. Namely, what to do with the savings

in case of their death? Do they want to bequeath the savings to their heirs, or maybe purchase

an annuity product combined with a life insurance policy? What level of death sum should they

choose?

We argue that aforementioned decisions should differ for each individual and should account

for the following factors: 1) economical characteristics - such as current value on the pension

savings account, expected pension contributions (mandatory and voluntary), and expected income

after retirement (e.g. retirement state pension), and 2) personal characteristics - such as risk

aversion, lifetime expectancy, preferable payout profile, bequest motive, and preferences on portfolio

composition.

To help the individuals manage the savings and investment decisions we build an optimization-

based financial planning model. Because such a model can be complicated and difficult to solve, we

propose to combine two popular methodologies: multi-period stochastic programming (MSP) and

stochastic optimal control (SOC), also referred to continuous-time and state dependent dynamic

programming. The latter method is common in financial and actuarial literature, and, although

best applied for simple models, provides the intuition behind the optimal solutions. See for example,

(Yaari, 1965), (Samuelson, 1969), (Merton, 1969, 1971) and (Richard, 1975), for optimal decisions

regarding investment, consumption and sum insured.

On the contrary, MSP, which is characteristic for operations research, has highly practical ap-

plication and complement SOC approach, especially in terms of adding realistic constraints and

modeling more complicated processes. In stochastic programming approach we model the possible

outcomes for the uncertainties in a scenario tree, and numerically compute the optimal solution at
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each node of the tree. See, for example, (Carino et al., 1998) and (Carino and Ziemba, 1998), who

formulate a financial planning model for one of the biggest Japanese property and casualty insurer,

(Mulvey et al., 2003), who present a multi-period stochastic network model for integrating corporate

financial and pension planning, and (Mulvey et al., 2008) who expand this work by adding the bor-

rowing decisions. The applications of MSP to individual asset-liability management can be found,

for example in (Ziemba and Mulvey, 1998), (Kim et al., 2012) and (Konicz and Mulvey, 2013).

However, the main drawback of this optimization method is the ability to handle many periods

under enough uncertainty. Especially, modelling the entire lifetime of an individual is challenging

in terms of computational tractability.

To benefit from both optimization approaches and to avoid the aforementioned drawbacks, we

combine them into one mathematical framework. We solve the problem using MSP approach up to

some horizon T , and to ensure that the model accounts for the entire lifetime of an individual, we

insert the end effect in the objective function of MSP. The end effect is determined by the optimal

value function calculated explicitly via SOC technique. This function covers the period from the

horizon T to the individual’s death. Combining these two optimization approaches is new and has

only been investigated in (Geyer et al., 2009) and (Konicz et al., 2013).

The paper is organized as follows. Section 2 describes the economical and personal characteristics

that we take into account when advising on how to manage the pension savings. Section 3 presents

the financial planning model. Section 4 explains the intuition behind the optimal solution obtained

from MSP model. Section 5 includes numerical examples illustrating the application of the model

for different individuals. Section 6 concludes. Finally, Appendix A introduces multi-stage stochastic

programs and Appendix B presents details of the explicit solution derived via SOC approach. We

argue that management of savings in DC pension plan should account for economical and personal

characteristics, and it should be tailored to a customer. Our model takes into account the following

factors.

2 Economical and personal characteristics

We argue that management of savings in DC pension plan should account for economical and

personal characteristics, and it should be tailored to a customer. Our model takes into account the

following factors.

2.1 Economical characteristics

Current value on the savings account The value of the individual’s account, Xt, develops

according to the initial savings x0, contributed premiums, capital gains including dividends, insur-

ance coverage, accredited survival credit and the benefits paid after retirement - all these elements

are described below.
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Premiums Until retirement the individual contributes to the savings account. The premiums P tott

consist of a fixed percentage, pfixed, of the labor income, lt, that, in many countries, is mandatory

and decided by the employer, and the additional voluntary contributions, pvol lt. The latter may be

of interest of an individual who wishes to increase the future benefits.

P tott = (pfixed + pvol)lt, pfixed ∈ [0, 1], pvol ∈ [0, 1− pfixed].

The labor income lt is deterministic and increases with a salary growth rate yl, lt = l0e
ylt, where l0

is the level of the labor income at the current time t0. Both the premiums and the labor income

are positive only until retirement, t < TR; otherwise 0.

State retirement pension After retirement the individual has no other income than state re-

tirement pension, bstatet . This income is typically financed on a pay-as-you-go basis from general

tax revenues, and ensures a basic standard of living for old age. It often depends on the level of the

individual’s income before retirement, but not on the income from the DC plan. We assume that

the state retirement pension consists of the life long, yearly adjusted payments.

2.2 Personal preferences

Risk aversion The individual is risk averse and has a utility function u characterized by a constant

relative risk aversion (CRRA), 1 − γ, and the time dependent weights wt. The impatience factor

ρ, which is included in function wt, reflects the importance of the benefits and death sum now

relatively to how important these payments would be in the future:

u(t, Bt) = 1
γw

1−γ
t Bγ

t , wt = e
− ρt

1−γ , ∀γ∈(−∞,1)\{0}.

The choice of γ = 0 implies the logarithmic utility.

Lifetime expectancy The individual has uncertain lifetime, which we model with two kinds

of mortality rates: µt and νt. The first function is the subjective mortality rate and reflects the

individual’s opinion about her health status and lifestyle. For example, does she live a healthy

lifestyle and thus expect to live longer than others? Is she a regular smoker or maybe seriously

ill? The answers to these questions affect the decisions regarding the payout profile as well as the

decision about purchasing life insurance.

The second function, νt, also referred to pricing mortality, is used by life insurers for calculating

the price of their life contingent products. Especially in European countries, due to legislation,

both the survival credit and the price for life insurance are calculated under unisex criteria, and the

individual is not even subject to health screening, see (Rocha et al., 2010). A person with a cancer

disease, heart attack, a regular smoker or an overweight person has the right to the same benefits
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as a healthy individual. Pricing mortality rates are typically reported in the actuarial life tables.

Payout profile Upon retirement the individual starts receiving the retirement income. The

benefits come from two sources: the state retirement pension, bstatet , and the benefits from the DC

plan, Bt:

Btot
t = bstatet +Bt, t ≥ TR.

The benefits from the DC plan, also known as the labor market pension (occupational pension,

2nd pillar) and the individual retirement accounts (private pension, 3rd pillar), are one of the

most important decision variables in the optimization problem. Individuals can choose among the

following possibilities:

• Duration of the payments. Is the individual interested in receiving a lump sum benefit upon

retirement, regular payments over a period of 10 or 25 years (term annuity), or regular pay-

ments as long as she is alive (life annuity)? We can control the duration in the model by

choosing the appropriate value of T̃ , which denotes the time of receving the last benefit.

• Payout curve. If interested in annuities, does she prefer to receive constant, increasing or

maybe decreasing payments? By inserting the right parameters in the utility function: the

impatience factor ρ and risk aversion 1−γ, we can control the payout curve. Another important

factor to consider is the lifetime expectancy, which depends on the subjective mortality rate

µt. A person with health problems might want to spend more of her savings during the first

years of retirement, whereas a person who expects to live long would want to make sure she

would never outlive her resources.

• Size of the payments. To increase the size of the benefits, the individual can either increase the

premiums or choose a more aggressive investment strategy, for example by choosing equity-

linked (variable) annuities, as defined e.g. in (Blake et al., 2003). These products differ

from traditional fixed rate annuities that offer a constant level of payments during retirement

in a way, that their size is regularly adjusted to account for capital gains and losses. This

adjustment is necessary to avoid the danger of running out of the resources before death.

However, equity-linked annuities are directly linked to market returns, therefore can be risky.

Bequest motive Not surprisingly, the marital status and dependants play a crucial role in the

choice of the pension product. A single individual would be interested in a life annuity. In this type

of contract an individual agrees to give up the savings upon death, which are then inherited by the

life insurer. Thus, in contrast to other products, life annuities provide with an additional return

arising from mortality risk sharing. This return is often called a survival credit and is proportional

to the value of the individual’s savings, i.e. νtXt.
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The individual with dependants would bequeath some death sum Beqt to her heirs. We assume

that upon death, life insurer inherits the value of the savings, but pays out Beqt to the dependants.

The size of death benefit can be proportional to the value of the account through a factor inst,

Beqt = instXt,

or can be a decision variable in the program. In the latter case, we introduce an additional param-

eter k, which defines the strength of the bequest motive relatively to the received benefits. The

actuarially fair price for the insurance coverage is equal to νtBeqt. Because choosing larger death

benefit leads to lower annuity payments, and vice versa, it is not easy to find the right balance

between the level of annuity payments and the level of death sum.

Portfolio composition Retirement savings can be allocated to a number of financial assets. In

the U.S. the individuals have lots of flexibility and can invest in highly leveraged financial products.

In countries such as Denmark, the individuals have a limited list of assets to choose from. For

example, life insurers offering unit-linked products allow for investments within their own list of

mutual funds and ETFs, which replicate stock indices for different regions and industries, corporate

and government bonds with different maturities, commodities, etc.

Our model allows the individual to include her preferences regarding asset allocation. For

simplicity, we consider portfolios composed of positions in four asset classes: cash (corresponding

to a 3-month short rate), an aggregate bond index including both government and corporate bonds

with different durations, a domestic stocks index and an international stocks index.

3 Multi-stage stochastic program formulation

Stochastic programming is a general purpose framework for modeling optimization problems. We

include a brief introduction to stochastic programming in Appendix A, whereas more details can

be found in the classical books on the subject, for example (Birge and Louveaux, 1997), (Zenios,

2008), and (Shapiro et al., 2009).

The range of possible outcomes for the uncertainties is modeled by a scenario tree, which consists

of nodes n ∈ Nt uniquely assigned to stages t = 1, . . . , T . Each node has a probability probn, so

that ∀t
∑

n∈Nt probn = 1. At the first stage we have only one root node n0, whereas the number of

nodes at other stages corresponds to possible values of random vector ξt. Every node n ∈ Nt, t > t0,

has a unique ancestor n−, and every node n ∈ Nt, t < T , has children nodes n+. The nodes with no

children are called the leaves. A scenario Sn is a set of all predecessors of a leaf n : n−, n−−, ..., n0,

or equivalently, a single branch from the root to the leaf. The number of scenarios in the tree equals

the number of leaves. Fig. 1 illustrates an example of a three-stage scenario tree.

A considerable amount of literature focuses on scenario generation methods for stochastic pro-
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Figure 1: A 3-period scenario tree with a constant branching factor 3 and 33 = 27 scenarios.

gramming. Among different approaches we can distinguish sampling, simulation, scenario reduction

techniques and moment matching methods. For the purpose of our study we have chosen the tech-

nique that matches the statistical properties (the first four moments and the correlations) of the

underlying processes. This approach has been introduced by (Høyland and Wallace, 2001), who

suggest solving a nonlinear optimization problem that minimizes the distance between the proper-

ties of the generated tree and of the underlying process. Both the asset returns and the probabilities

of each node are the decision variables in this formulation.

During recent years several authors have been investigating possible improvements of the mo-

ment matching approach. (Ji et al., 2005) show that if one can predetermine the outcomes of the

asset returns (e.g. by simulation) and choose the probabilities of the nodes to be the only variables

in the model, then it is possible to match the statistical properties of the underlying process with

a linear optimization problem. This method is further improved by (Xu et al., 2012) who combine

the simulation, the K-means clustering approach, and the linear moment matching, and by (Chen

and Xu, 2013), who remove the simulation component and applies the K-means clustering method

directly onto the historical dataset.

Once generating the scenario tree with events of death and asset returns, (the parameters for

calculation of the survival probabilities and for the asset returns distribution are given in Table

4), we can calculate the savings and investment decisions. The optimal solution depends on the

possible future realizations of the asset returns and death events, and on the decisions made in the

previous stage. Fig. 2 shows a fragment of a multi-stage tree with numerically calculated asset

allocation, annuity payments and death sum. To obtain the entire tree, for each period t ∈ [t0, T ],

node n ∈ Nt, and asset class i ∈ I, we define the following parameters and decision variables:
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Parameters
TR retirement time
T the end of decision horizon and the beginning of the remaining period

modeled by the end effect

T̃ expiration of the contract, i.e. the last benefit is paid out
probn probability of being at node n
x0 initial value of savings
xminT minimum level of savings upon horizon T
bstatet state retirement pension at time t
bmint minimum level of benefits at time t
lt labor income at time t
pfixed fixed percentage of the labor income defining the mandatory premiums
pvol fixed percentage of the labor income defining the maximum voluntary premiums
inst proportion of the savings defining the death sum
k weight on the bequest motive relatively to the size of the benefits

tp̃y probability that an y-year old individual survives to at least age y + t
(individual’s expectation)

tpy probability that an y-year old individual survives to at least age y + t
(insurer’s expectation)

q̃y probability that an y-year old individual dies during the following period
(individual’s expectation)

qy probability that an y-year old individual dies during the following period
(insurer’s expectation)

ri,t,n return on asset i at node n corresponding to stage t.

Decision variables
X→i,t,n amount allocated to asset class i, at the beginning of period t, at node n,

before rebalancing and any cash-flows
Xi,t,n amount allocated to asset class i, at the beginning of period t, at node n,

after rebalancing and any cash-flows

Xbuy
i,t,n amount of asset class i purchased for rebalancing in period t, at node n

Xsell
i,t,n amount of asset class i sold for rebalancing in period t, at node n

Bt,n benefits (annuity payments) from the DC pension plan received in period t, node n
Btot
t,n total benefits paid in period t, node n

P tott,n total premiums (mandatory and voluntary) paid in period t, node n
Beqt,n death sum paid to the heirs upon the individual’s death in period t, node n.

All the savings are initially allocated to cash (denoted by asset class i = 1), thus X→1,t0,n0
= x0 and

X→i,t0,n0
= 0, ∀i 6=1. The administration costs, transaction costs, and the taxes have been ignored for

simplicity.

The objective function, eq. (1), which we aim to maximize, consists of three terms: (i) the

expected utility of total retirement benefits paid while the person is alive, (ii) the expected utility

of death sum paid to the heirs upon the individual’s death, and (iii) the end effect described in detail

in Appendix B. The budget constraint, eq. (2), specifies the cash-flows accompanying the savings

account: the incoming payments (capital gains, amount gained from the sales of the securities,
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premiums, and survival credit) and the outgoing payments (the amount spent on the purchase of

new securities, annuity payments, and insurance coverage). The next constraint, (3), defines the

asset inventory balance. We first account for the returns earned during the previous period, eq. (4),

and then rebalance the amount by purchasing or selling a given asset. In (5) we define the total

premiums paid to the savings account as the sum of the mandatory and voluntary contributions.

Constraint (6) defines the total benefits as the sum of the state retirement pension and the annuity

payments received from the DC plan. By including equations (7) and (8), we ensure that the

benefits and the value of the savings do not fall below the certain pre-specified levels bmint and xminT ,

respectively. Constraint (9) defines the death benefit as a fraction of the savings, whereas (10)

defines the actuarially fair survival credit that the individual receives for each period she survives.

If the individual wishes to bequeath exactly the value of the savings, i.e. inst = 1, then the survival

credit is equal to the price of the death benefit, and the last two terms in the budget constraint

(2) cancel out. In a case when the individual is interested in the optimal death sum, constraint (9)

is no longer necessary and should be removed. Equations (11)-(12) define the limits on portfolio

composition. These can reflect the regulatory constraints, for example, no shorting and gearing is

allowed (ui = 1 and di = 0), or they can reflect the individual’s preferences on portfolio composition.

Finally, we include eq. (13) to distinguish between the purchases and sales, and to ensure that the

annuity payments and the death sum are positive.

maximize

T−1∑
s=max(t0,TR)

∑
n∈Ns

sp̃yu
(
s,Btot

s,n

)
· probn +

T−1∑
s=t0

∑
n∈Ns

sp̃y q̃y+s k u (s,Beqs,n) · probn

+ T p̃y
∑
n∈NT

V

(
T,
∑
i

X→i,T,n

)
· probn, (1)

subject to

X1,t,n = X→1,t,n +
∑
i 6=1

Xsell
i,t,n −

∑
i 6=1

Xbuy
i,t,n + P tott,n1{t<TR}−Bt,n1{t≥TR} +Rsurvt,n − qy+tBeqt,n, (2)

t ∈ {t0, . . . , T − 1}, n ∈ Nt,

Xi,t,n = X→i,t,n +Xbuy
i,t,n −X

sell
i,t,n, t ∈ {t0, . . . , T − 1}, n ∈ Nt, i 6= 1, (3)

X→i,t,n = (1 + ri,t,n)Xi,t−,n− , t ∈ {t1, . . . , T}, n ∈ Nt, i ∈ I, (4)

P tott,n ≤ (pvol + pfixed)lt, t ∈ {t0, . . . , T − 1}, n ∈ Nt, (5)

Btot
t,n = Bt,n + bstatet , t ∈ {t0, . . . , T − 1}, n ∈ Nt, (6)

Btot
t,n ≥ bmint , t ∈ {t0, . . . , T − 1}, n ∈ Nt, (7)∑

i

X→i,T,n ≥ xminT , n ∈ NT , (8)
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Beqt,n = inst
∑
i

X→i,t,n, t ∈ {t0, . . . , T − 1}, n ∈ Nt, (9)

Rsurvt,n = qy+t

∑
i

X→i,t,n, t ∈ {t0, . . . , T − 1}, n ∈ Nt, (10)

Xi,t,n ≤ ui
∑
i

Xi,t,n, t ∈ {t0, . . . , T − 1}, n ∈ Nt, i ∈ I, (11)

Xi,t,n ≥ di
∑
i

Xi,t,n, t ∈ {t0, . . . , T − 1}, n ∈ Nt, i ∈ I, (12)

Xbuy
i,t,n ≥ 0, Xsell

i,t,n ≥ 0, Bt,n ≥ 0, Beqt,n ≥ 0, t ∈ {t0, . . . , T − 1}, n ∈ Nt, i ∈ I. (13)

Expression 1{(·)=t} denotes an indicator function equal to 1 if (·) = t and 0 otherwise.

4 Intuition behind the optimal policy

Stochastic programming approach has highly practical application, and in contrast to stochastic

optimal control, can handle more realistic constraints. However, because MSP calculates the optimal

decisions numerically at each node of the scenario tree, it may be difficult to interpret the results.

Accordingly, to understand the optimal solution, we take a closer look at the explicit formulae

obtained for a simplified model via SOC approach.

Because the explicit solution for the case with two sources of retirement income (state retirement

pension and benefits from the DC plan) has not been presented in the literature, we derive the

optimal decisions in B. Nevertheless, to be able to derive the explicit solutions we have to simplify

the model by introducing the following assumptions: i) a continuous-time setting, ii) no upper or

lower bounds on the variables (such as those in equations (7)-(8) and (11)-(13)), iii) a risk-free

return on cash, and iv) either a deterministic or optimal death benefit. Otherwise, obtaining the

explicit solution is non-trivial.

Optimal investment The optimal investment decision for the presented model is of the form

obtained by (Richard, 1975). Specifically, eq. (26)-(27) indicate that the proportion invested in

the risky portfolio (i.e. portfolio consisting only of the risky assets) depends on the risk aversion,

the market parameters, the value of the savings and the present value of the expected retirement

state pension, gt; whereas the proportions between the assets in the risky portfolio depend on their

expected returns, volatilities, and the correlations between the assets. If the individual expects

no retirement state pension, the optimal strategy suggests a fixed-mix portfolio, as suggested by

(Merton, 1969, 1971). Otherwise the individual should decrease the percentage in the risky portfolio

as gt decreases.

Optimal annuity payments Not less important is to determine the optimal annuity payments.

Is there a withdrawal rate, according to which the accumulated savings should be spent, as inves-
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tigated in e.g. (Bengen, 1994) and (Horneff et al., 2008)?

To understand formula (23), let us focus on the individual upon retirement (i.e. 65-year old),

and let assume the risk-free investment, so we can separate the annuity payments decision from the

investment decision. Given that the subjective mortality rate is equal to the pricing mortality rate,

µt = νt, the payout curve is: constant if the impatience factor is equal to the risk-free rate, ρ = r,

decreasing for impatient individuals, ρ > r, and increasing for patient ones, ρ < r. The parameter

γ controls the slope of the payout curve. For the less risk averse individuals, such as γ = −2, the

difference between the benefits received at the beginning and at the end of retirement is bigger than

for moderately risk averse persons with γ = −4. The optimal payout profile for different choices of

γ and ρ is illustrated on Fig. 3a. None of these payout profiles is better than the other; they are

all optimal for individuals with different preferences.
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Figure 3: The optimal annuity payments for a given investment strategy and parameters γ, ρ and µt: Figures (a) and
(c) assume the risk-free investment, figures (b) and (d) assume the optimal investment: {cash, bonds, dom. stocks,
int. stocks}={10.7%, 49.0%, 27.9%, 12.3%} for γ = −4 and {cash, bonds, dom. stocks, int. stocks}={-48.8%, 81.7%,
46.6%, 20.5%} for γ = −2. Furthermore, Figures (c) and (d) assume the expected lifetime shorter than for an average
individual, µt = 5νt. Parameters: age0 = 65, x0 = 650, k = 3125, and bstatet = 0. The amounts are in EUR 1,000.

Investing in risky assets directly affects the size of annuity payments. To avoid the danger

of running out of the resources before the individual’s death, the benefits must be adjusted each

year to account for the capital gains and losses. Nevertheless, despite these adjustments, we can
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MSP
Age 65 70 75 80 85 90
risk-free investment, moderate risk aversion (γ = −4)
constant benefits, ρ = r 3.8% 4.4% 5.3% 6.4% 7.8% 9.6%
decreasing benefits, ρ = 0.04 4.2 4.8 5.6 6.7 8.1 9.9
increasing benefits, ρ = −0.02 3.5 4.1 5.0 6.1 7.5 9.3
shorter expected lifetime, µt = 5νt, ρ = r 4.6 5.5 6.7 8.3 10.5 13.0

optimal investment, moderate risk aversion (γ = −4), i.e.,
{cash, bonds, dom. stocks, int. stocks}={10.7%, 49.0%, 27.9%, 12.3%}

constant benefits, ρ = 0.119 6.2 6.8 7.5 8.5 9.8 11.4
decreasing benefits, ρ = 0.15 6.7 7.2 8.0 8.9 10.2 11.7
increasing benefits, ρ = 0.04 5.1 5.7 6.5 7.6 8.9 10.6
shorter expected lifetime, µt = 5νt, ρ = 0.119 7.0 7.8 8.9 10.5 12.5 14.8

optimal investment, lower risk aversion (γ = −2), i.e.
{cash, bonds, dom. stocks, int. stocks}={-48.8%, 81.7%, 46.6%, 20.5%}
constant benefits, ρ = 0.132 8.1 8.6 9.3 10.2 11.3 12.7

Table 1: Optimal withdrawal rates for a given investment strategy and parameters γ, ρ and µt. Parameters: age0 = 65,
x0 = 650, k = 3125, and bstatet = 0.

still control the expected payout curve; we can choose parameters (γ, ρ, µt) such that the expected

payout curve is constant, increasing or decreasing. Given the optimal investment strategy, eq. (26),

we obtain constant expected annuity payments for ρ = r + (2− γ) (α−r)2
2σ2(1−γ)

and µt = νt. Any other

choice of ρ and µt leads to either increasing or decreasing payout curve, as shown on Figs. 3b and

3d.

Following this argumentation, one can recognized that formula (23) defines equity-linked an-

nuity payments. The more aggressive investment strategy, the higher expected benefits. A person

interested in a constant payout curve would expect: EUR 52,900 given γ = −2 and ρ = 13.2%, EUR

40,500 given γ = −4 and ρ = 11.9%, and EUR 24,800 given the risk-free investment, ρ = r and

any choice of γ. This formula also shows, that indeed there exists an optimal withdrawal rate 1/ā∗t

that depends on the constants γ and ρ characterizing the individual’s risk tolerance and impatience,

and on the subjective mortality rate µt. Interestingly, the withdrawal rate is not only a fraction of

the savings at a given time, but also of the present value of the expected retirement state pension.

Accordingly, the size of the benefits expected from the state retirement pension affects the optimal

size of the payments from the DC plan. The optimal withdrawal rates for different values of γ, ρ

and µt are presented in Table 1.

Finally, Figs. 3c-3d show how the subjective lifetime expectancy affects the optimal payout

curve. The choice of µt = 5νt indicates that the individual expects to die earlier than an average

individual assumed by the life insurer. Specifically, for the chosen mortality model, such a choice of

µt corresponds to the expected lifetime of 78.7 years, with 70.2% chances to survive until age 75 and

only 18.5% chances to survive until age 85; (given that the individual is alive at age 65). Indepen-

dently of the choice of γ and ρ, the payout curve is no longer constant, but decreases proportionally

12
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to the probability of survival. This result indicates that a life annuity with a decreasing payout

curve is preferable than for example a term annuity, which pays constant the benefits for 10 or 25

years. A similar conclusion has been drawn by (Milevsky and Huang, 2011), who argue that ”the

optimal ... behavior in the face of personal longevity risk is to consume in proportion to survival

probabilities - adjusted upward for pension income and downward for longevity risk aversion - as

opposed to blindly withdrawing constant income for life”.

Optimal death sum The optimal death sum, eq. (24), is a linear function of the optimal

annuity payments. Both decisions are proportional by the factor
(
k µtνt

)1/(1−γ)
, which changes with

the strength of the bequest motive k, risk aversion, and the relation between the subjective and

pricing mortality rates. Therefore, similarly as expected annuity payments, the expected death

sum can be constant, increasing or decreasing, whereas the actual size of the death sum depends

on the realized portfolio returns. Formula (24) defines moreover the optimal death sum rate as a

proportion 1
ā∗t

(
k µtνt

)1/(1−γ)
of the current savings and the present value of expected state retirement

pension.

5 Numerical results

To present the application of the model we have chosen a number of individuals with different

economical and personal characteristics. Even small-scale optimization problems, such as problems

based on 1,250 scenarios (4 periods with branching factors {10,5,5,5}), are sufficient to present

the applications of the model. The MSP formulation can be implemented on a personal computer

and takes only a few seconds to run. We implemented the program on a Dell computer with an

Intel Core i5-2520M 2.50 GHz processor and 4 GB RAM, using Matlab 8.2.0.713 (R2013b), and

GAMS 24.1.3 with non-linear solver MOSEK 7.0.0.75. The optimization module can also be solved

with a linear or quadratic solver, such as CPLEX, but the objective function has to be linearly

or quadratically approximated. Furthermore, to check the robustness of the results, we rerun the

model for 30 different scenario trees. Thus, the results are based on 1, 250 · 30 = 62, 500 scenarios.

The numerical examples provide some guidelines to individuals in DC pension plans on how

to manage their savings both before and after retirement. These guidelines can also be used by

life insurers for designing pension products that are highly customised to the individuals’ needs.

When speaking of improving pension product design, we refer to pension savings management

that combines three important decisions: investment, annuity payments and the level of death sum.

These decisions are optimal for a particular individual, therefore, each person should have a different

pension product.

Because most of the considered products allow for the investment in risky assets, guarantee

payments as long as the person is alive, and pay out a death sum upon the individual’s death, we

call these products optimal equity-linked life annuities. Additionally, depending on the time of the
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purchase of the product, we distinguish between immediate and deferred annuities. Both products

start paying out the benefits upon retirement, but deferred annuity is purchased when the individual

is still employed. Furthermore, during the deferment period the premiums are invested according

to the optimal investment strategy, and the life insurance policy is effective.

5.1 Optimal immediate equity-linked life annuity

We start with a 65-year old female1. She is just retiring and is interested in purchasing an immediate

equity-linked life annuity. She has saved x0 = 650, 000 (EUR) on her pension account, has moderate

risk aversion 1 − γ = 5, and expects to live as assumed by the insurer (µt = νt), i.e. on average

until age 89.1. During retirement she expects the benefits from the state, bstatet = 4, 000 (EUR).

When asked about the preferable payout profile, she chooses life long increasing payments. Such a

payout curve can be obtained for e.g. ρ = 0.04. She has a bequest motive but is not sure how much

money to bequeath to her heirs, and how it will affect the level of the annuity payments. Therefore,

we investigate three cases: no bequest motive, k = 0, the death sum equal to the level of savings,

inst = 1, and the death sum equal to the sum of the benefits received over 5 years (obtained for

k = 51−γ νt
µt

= 3125). The life insurer does not allow for gearing or shorting the assets, thus di = 0

and ui = 1.

Table 2, sections (a), (b) and (c), present the optimal decisions for a person with such charac-

teristics. The first 10 years of the retirement are modeled using MSP approach with the intervals

between the decisions of ∆t = {1, 3, 3, 3} years. Thereafter, we approximate the model with its

simpler continuous-time version that can be solved explicitly using SOC approach. Reading Table

2, we can observe three important facts. First, the optimal investment strategy is almost identical

for the considered different weights on the bequest motive. This result can be surprising at first,

but eq. (26) states that the only parameters that influence the investment decisions, are the mar-

ket parameters, the risk aversion, the current level of savings, and the present value of expected

retirement state pension. For γ = −4 the majority of savings upon retirement is invested in bonds

(53%), domestic stocks (32%), and international stocks (13%). These proportions change slowly

so that the individual invests less in risky assets as the present value of expected state retirement

benefits decreases.

Second, as chosen by the individual, the expected annuity payments increase. A person without

a bequest motive would receive the highest payments, not only because she does not pay for the

insurance coverage, but also because she receives a survival credit for each year she survives. Upon

retirement our individual will obtain the total yearly benefits of EUR 42,000, 36,600 and 36,900,

respectively for the cases without a bequest motive, with a death sum equal to the level of savings,

and with an optimal death sum given k = 3125. Twenty years after retirement the payments are

1We follow the approach common for the most European countries, where the price of annuities does not depend
on the gender, i.e. even though women are expected to live longer, they are entitled to receive the same benefits as
men.
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MSP SOC
Age 65 66 69 72 ageT=75 80 85
(a) Without a bequest motive, k = 0.
Cash 1% 0% 0% 0% 1% 2% 3%
Bonds 53 56 57 58 54 54 53
Dom. stocks 32 30 30 29 31 31 31
Int. stocks 14 14 13 13 14 13 13
Total benefits, Btot∗

t e42.0 e42.7 e44.7 e46.7 e48.5 e52.5 e56.8
Bequest amount, Beq∗t 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Value of savings, X∗t 650.0 645.4 616.6 577.2 525.8 457.4 377.8

(b) With a death sum equal to value of savings, inst = 1.
Cash 2% 0% 0% 0% 2% 4% 5%
Bonds 53 57 57 58 54 53 52
Dom. stocks 32 30 30 29 31 30 30
Int. stocks 14 14 13 13 13 13 13
Total benefits, Btot∗

t e36.6 e37.1 e38.8 e40.4 e42.1 e45.5 e49.3
Bequest amount, Beq∗t 650.0 648.7 636.8 616.4 210.3 227.6 246.4
Value of savings, X∗t 650.0 648.7 636.8 616.4 586.1 556.0 518.7

(c) With an optimal death sum given k = 3125.
Cash 2% 0% 0% 0% 2% 4% 5%
Bonds 53 57 57 58 54 53 52
Dom. stocks 32 30 30 29 31 30 30
Int. stocks 13 13 13 13 13 13 13
Total benefits, Btot∗

t e36.9 e37.5 e39.2 e40.9 e42.6 e46.1 e49.9
Bequest amount, Beq∗t 184.4 187.3 195.9 204.7 212.9 230.5 249.5
Value of savings, X∗t 650.0 650.2 639.4 621.1 594.2 563.6 525.6

(d) With a minimum level of benefits, bmint = 28, minimum level of savings
upon horizon, xT = 370, and optimal death sum given k = 3125.
Cash 27% 1% 1% 2% 2% 4% 5%
Bonds 43 61 60 59 54 53 52
Dom. stocks 22 26 28 28 31 30 30
Int. stocks 8 11 11 12 13 13 13
Total benefits, Btot∗

t e34.9 e35.9 e37.9 e40.0 e41.9 e45.3 e49.1
Bequest amount, Beq∗t 174.6 179.1 189.0 198.5 209.5 226.7 245.4
Value of savings, X∗t 650.0 644.0 631.0 611.4 583.6 553.7 516.6

(e) With shorter expected lifetime than an average individual, µt = 5νt,
and optimal death sum given k = 3125.
Cash 2% 0% 0% 0% 1% 2% 2%
Bonds 53 56 57 58 54 54 54
Dom. stocks 32 30 30 29 31 31 31
Int. stocks 13 14 13 13 14 13 13
Total benefits, Btot∗

t e42.2 e42.8 e44.2 e45.4 e46.0 e46.3 e43.6
Bequest amount, Beq∗t 290.3 294.1 303.8 311.5 317.0 319.1 300.1
Value of savings, X∗t 650.0 644.1 613.5 572.9 521.7 441.3 343.0

Table 2: The optimal asset allocation, total benefits and size of death sum for a 65-year old individual given: (a)
no bequest motive, (b) a death sum equal to the value of savings, (c) an optimal death sum given k = 3125, (d) a
minimum level of benefits bmint = 28 and a minimum level of savings upon horizon xminT = 370, and (e) a subjective
lifetime expectancy µt = 5νt. The numbers are presented in terms of means across the nodes associated with each
period and the scenario trees. Parameters: age0 = 65, x0 = 650, bstatet = 4, γ = −4, ρ = 0.04, di = 0, ui = 1, µt = νt,
T = 10, and ∆t = {1, 3, 3, 3}. The asset allocations are in percentages and other amounts are in EUR 1,000.
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expected to increase to EUR 56,800, 49,300 and 49,900, respectively.

Third, looking closer at the case with the optimal death sum, we find that the death benefit

increases with time, and that it is much lower than the value of savings. As explained in Sec.

4, the optimal death sum is proportional to the annuity payments by a factor
(
k µtνt

)1/(1−γ)
= 5.

Therefore, increasing annuity payments imply increasing death benefit. Furthermore, Beq∗t is much

lower than the value of savings for most of the retirement; it is higher than the value of savings only

during the very late years (e.g. later than age 95), when the individual has already spent most of

her savings.

Recall that Table 2 presents the means across the nodes assigned to each time period, across the

scenarios, and across different scenario trees. The optimal values are stochastic and differ for each

realization of the asset returns. Equity-linked payments may vary significantly, especially after a

longer period such as 10 years. Even though the expected benefits are increasing, if for 10 years in

a row the risky assets bring losses, our individual may end up only with yearly payments of EUR

20,000 at age 75. See Fig. 4a. To mitigate this risk, we can add a lower limit on the benefits’

size by adding constraints (7) and (8) in the MSP formulation. The results in Table 2, section (d)

and Fig. 4b, show that these constraints affect the optimal decisions. The asset allocation is more

conservative during the first years of retirement, and leads to on average lower annuity payments

and death sum. Other studies have shown that adding the guarantees to pension products increases

the life insurer’s liabilities, and thus prevents them from offering greater investment opportunities,

see e.g. (Guillén et al., 2013). In this example, a guarantee that the minimum payment never falls

below bmint = 28, 000 (EUR) is only added for the first 10 years after retirement. Nevertheless, such

a guarantee reduces the expected yearly benefits from EUR 36,900 and 49,900 (upon ages 65 and

85) to EUR 34,900 and 49,100, respectively.

Finally, what can we recommend if our individual has a bad health condition and expects to

die earlier than an average individual? To illustrate such a case, we choose µt = 5νt, that is, the

expected lifetime of our individual is 78.7 years, which is approximately 10 years shorter than what

the insurer assumes. Given that as in many European countries the survival credit and the price

for life insurance are calculated under unisex criteria and are not subject to health screening, the

individual should spend more savings during the first years of the retirement. The optimal solution

(Table 2, section (e)) clearly suggests to change the payout curve so that the expected benefits

decrease proportionally to the probability of survival, tp̃y, as well as to increase the death sum. The

optimal investment strategy remains similar as in the case with the average lifetime expectancy.

5.2 Optimal deferred equity-linked life annuity

This section focuses on the decisions that an individual faces during the accumulation phase (i.e.

before retirement). Our person is a 45-year old female with initial savings of x0 = 130, 000 (EUR)

and pension contributions of 10% of her salary. The yearly salary, lt = 50, 000 (EUR), increases
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Figure 4: The probability distribution of the optimal total benefits in one scenario tree, Btot∗t = B∗
t + bstatet , and the

optimal investment in terms of means across the nodes and the scenario trees given: (a) an optimal death sum given
k = 3125, and (b) an optimal death sum given k = 3125, the minimum level of benefits bmint = 28, and the minimum
level o savings upon horizon, xminT = 370. The central mark in each box is the median, the triangle marker denotes
the mean, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data points
not considered outliers, and outliers are plotted individually with the red crosses. The red dashed line denotes the
minimum level of benefits bmint . Parameters: age0 = 65, x0 = 650, bstatet = 4, γ = −4, ρ = 0.04, µt = νt, di = 0,
ui = 1, T = 10, and ∆t = {1, 3, 3, 3}. All the amounts are in EUR 1,000.

every year with yl = 2%. Having an average lifetime expectancy and anticipating bstatet = 4, 000

(EUR) from the retirement state pension, she would like to purchase an annuity that starts constant

payments in 20 years (upon her retirement). She describes herself as moderate risk averse (e.g.

γ = −4), therefore would like to invest some of her savings in risky assets. She has no further

preferences on the portfolio composition but she faces short sales constraints on all assets.

The optimal decisions in this example are the investment strategy before and after retirement

and the annuity payments after retirement. We also investigate the cases with and without a bequest

motive. We divide the period of 20 years into 4 periods of 5 years each - we make the decisions every

fifth year. The solution after retirement is calculated analytically using Hamilton-Jacobi-Bellman

techniques for the simplified model.

Table 3 shows that, similarly as in the previous case, the bequest motive has a minor effect on

the optimal asset allocation. The overall investment strategy suggests to decrease the risk as the
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individual ages. The optimal portfolio consisting of 0% in cash, 33% in bonds, 46% in domestic

stocks, and 21% in international stocks, (upon age 45), smoothly changes to {1%, 54%, 31%, 14%},
respectively, upon age 75. In the MSP formulation we assume that cash has a volatility of 3.8%

and that no shorting or gearing is allowed, whereas for the period [T, T̃ ), which is solved using

SOC approach, the model is simplified: cash is assumed to be risk-free and no constraints on the

portfolio allocation are imposed. (Otherwise finding the analytical solution is non-trivial.) This

difference in the assumptions cause the fluctuations in cash holdings between the periods covered

by two different optimization approaches.

The bequest motive affects the level of annuity payments, but not the payout curve: the expected

benefits are constant. A person without a bequest motive will receive the highest benefits, E[Btot∗
t ] =

50, 100 (EUR) per year, a person with a death sum equal to the value of savings (inst = 1) will

receive payments of EUR 44,200 per year, and a person with an optimal death sum given parameter

k = 51−γ = 3125 will receive payments of EUR 44,240 per year. Notice how small the difference

between the annuity payments in the last two cases is. Because the probability that a 45-year

old person survives until age 65 is high, the price for the life insurance is low. Therefore, the

value of savings upon retirement X∗T is similar in both cases, and implies the annuity payments of

approximately the same level. After retirement the optimal death sum is constant and proportional

to the annuity payments by factor 5.

Nevertheless, the numbers in Table 3 are the means across the scenarios, whereas their actual

values depend on the realizations of the asset returns. Figure 5a (left) shows the probability dis-

tribution of the savings upon retirement for the case with the optimal death sum (for one scenario

tree). After contributing to the pension account for 20 years and allocating the portfolio according

to the optimal investment strategy, the individual should expect to save up EUR 622,400 upon

retirement. This amount gives the expected total benefits of EUR 44,240, which is 60% of the

individual’s salary level upon retirement.

However, this amount can be much lower: in a scenario with long periods of negative returns, the

person may end up with only EUR 200,000 on her savings account, which would provide the yearly

retirement income of EUR 17,900. Thus, she may choose to increase the premiums by additional

5% and add a lower limit on the size of the savings upon retirement, for example xminT > 300, 000

(EUR). This limit corresponds to the minimum level of benefits bmint = 24, 200 (EUR). As illustrated

in Table 3 and Fig 5b, both the probability distribution of savings and the optimal asset allocation

change. The probability distribution has shifted to the right and the investment strategy implies

slightly more conservative portfolio.

Is it possible to choose a higher limit xminT solely by adjusting the investment strategy? The

answer depends on the available assets and their returns’ distribution. To be certain that the value

of savings will not fall below a pre-specified limit, we must employ a more conservative investment

strategy. However, if the strategy is too conservative, it may not be possible to reach this level.

Therefore, choosing too high values for xminT often leads to infeasible solution.
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MSP SOC
Age 45 50 55 60 ageT=65 70 75

(a) Without a bequest motive, k = 0.
Cash 0% 0% 0% 0% -2% -1% 0%
Bonds 33 46 51 56 56 55 55
Dom. stocks 46 38 32 30 32 32 31
Int. stocks 21 16 17 14 14 14 14
Total benefits, Btot∗

t e0.0 e0.0 e0.0 e0.0 e50.1 e50.1 e50.1
Bequest amount, Beq∗t 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Value of savings, X∗t 130.0 211.7 316.7 451.6 623.6 553.2 473.3

(b) With a death sum equal to value of savings, inst = 1.
Cash 0% 0% 0% 0% -2% 0% 1%
Bonds 33 46 51 56 56 55 54
Dom. stocks 46 38 32 30 32 31 31
Int. stocks 21 16 17 14 14 14 14
Total benefits, Btot∗

t e0.0 e0.0 e0.0 e0.0 e44.20 e44.20 e44.20
Bequest amount, Beq∗t 130.0 211.7 316.5 451.0 221.0 221.0 221.0
Value of savings, X∗t 130.0 211.7 316.5 451.0 621.8 578.3 528.0

(c) With an optimal death sum given k = 3125.
Cash 0% 0% 0% 0% -2% 0% 1%
Bonds 33 46 51 56 56 55 54
Dom. stocks 46 38 32 30 32 31 31
Int. stocks 21 16 17 14 14 14 14
Total benefits, Btot∗

t e0.0 e0.0 e0.0 e0.0 e44.24 e44.24 e44.24
Bequest amount, Beq∗t 233.0 227.8 224.4 222.2 221.2 221.2 221.2
Value of savings, X∗t 130.0 211.7 316.4 451.0 622.4 578.8 528.4

(d) With minimum level of savings upon retirement, xminT = 300,
additional contributions pvol = 5%, and optimal death sum given k = 3125.
Cash 1% 0% 0% 1% 0% 1% 2%
Bonds 37 47 52 57 55 54 54
Dom. stocks 43 38 32 29 31 31 31
Int. stocks 19 15 16 13 14 14 13
Total benefits, Btot∗

t e0.0 e0.0 e0.0 e0.0 e50.5 e50.5 e50.5
Bequest amount, Beq∗t 262.8 258.5 254.9 252.8 252.5 252.5 252.5
Value of savings, X∗t 130.0 225.6 351.5 514.6 723.0 671.0 611.5

(e) With shorter expected lifetime than an average individual, µt = 5νt
and optimal death sum given k = 3125.
Cash 0% 0% 0% 0% -2% -1% 0%
Bonds 33 46 51 56 56 55 55
Dom. stocks 46 38 32 30 32 31 31
Int. stocks 21 16 17 14 14 14 14
Total benefits, Btot∗

t e0.0 e0.0 e0.0 e0.0 e49.3 e48.4 e46.6
Bequest amount, Beq∗t 364.1 355.6 349.3 344.2 339.5 333.1 320.9
Value of savings, X∗t 130.0 211.6 316.3 450.7 621.7 548.2 463.1

Table 3: The optimal asset allocation, total benefits and size of death sum for a 45-year old individual given: (a)
no bequest motive, (b) a death sum equal to the value of savings, (c) an optimal death sum given k = 3125, (d)
a minimum level of savings upon horizon xminT = 300 and additional contributions pvol = 5%, and (e) a subjective
lifetime expectancy µt = 5νt. The numbers are presented in terms of means across the nodes associated with each
period and the scenario trees. Parameters: age0 = 45, x0 = 130, l0 = 50, yl = 2%, pfixed = 10%, pvol = 0, bstatet = 4,
γ = −4, ρ = 0.119, di = 0, ui = 1, µt = νt, T = 20, and ∆t = {5, 5, 5, 5}. The asset allocations are in percentages
and other amounts are in EUR 1,000.
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Figure 5: The probability distribution of the value of savings upon retirement X∗
T for one scenario tree, and the

optimal investment in terms of means across the nodes and the scenario trees given: (a) an optimal death sum given
k = 3125, and (b) an optimal death sum given k = 3125, the additional contributions pvol = 5%, and the minimum
level o savings upon horizon, xminT = 300. Parameters: age0 = 45, x0 = 130, l0 = 50, yl = 2%, pfixed = 10%,
bstatet = 4, γ = −4, ρ = 0.119, µt = νt, di = 0, ui = 1, T = 20, and ∆t = {5, 5, 5, 5}. The asset allocations are in
percentages and other amounts are in EUR 1,000.

Finally, are optimal deferred life annuities still attractive if one expects to die earlier than an

average person? We investigate the case for µt = 5νt, i.e. the expected lifetime of the individual

is 78.7 years and the probability that she survives until age 85 is only 18%. A closer look at the

optimal decisions (Table 3, section (e)) reveals that it is optimal for the person to invest in deferred

life annuities only if the payout curve is decreasing. The optimal withdrawal rate is proportional to

the probability of survival, therefore she should spend more savings in the beginning of retirement.

The initial payment is EUR 5,000 higher than in the case with the average lifetime expectancy

(compare with Table 3, section (c)), and the optimal death benefit increases significantly and stays

above EUR 300,000 until age 72.

6 Conclusions and future work

This paper provides some guidelines to individuals with defined contribution pension plans. We

argue that the decisions regarding the asset allocation, the annuity payments, and the size of
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death sum should be highly customized. With several numerical examples we have illustrated

how the optimal decisions depend on: 1) economical characteristics - such as current value on the

pension savings account, expected pension contributions (mandatory and voluntary), and expected

income after retirement (e.g. retirement state pension), and 2) personal characteristics - such as

risk aversion, lifetime expectancy, preferable payout profile, bequest motive, and preferences on

portfolio composition.

To help individuals manage their pension savings, we have built a model that combines two

optimization techniques: multi-stage stochastic programming and stochastic optimal control. MSP

especially has highly practical applications and generates results that are not only consistent with

common knowledge about life-cycle asset allocation, but are also realistic. The presented model

is flexible and can be applied either by financial advisers in countries where individuals have lots

of flexibility in managing their pension savings, or by life insurers in countries where individuals

are less involved in the savings and investment decisions. Because the operations research methods

are not common in the actuarial literature, we argue that the presented optimization approach has

potential to stimulate new thinking and add to actuarial practise.

This work could be improved in various ways. Investigation of the impact of the administration

costs, transaction costs and taxes is definitely relevant from a practical point of view. Taxes are

especially important, since in many countries life annuities are tax deferred investment vehicles,

and therefore preferred to personal investment. Furthermore, one could incorporate in the model

other sources of uncertainty such as stochastic longevity risk and uncertain salary progression.
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Appendices

A A short introduction to multi-stage stochastic programming

This appendix briefly introduces a multi-stage program with recourse. For a more detailed theory,
see e.g.(Birge and Louveaux, 1997), (Zenios, 2008) and (Shapiro et al., 2009).

To start with, let us formulate a two-stage version of the problem with recourse. We keep the
notation from the aforementioned books, and define (Ω,F ,P) to be a probability space, ω is an
element (outcome) of a sample space Ω, and ξ = ξ(ω) is a random vector which belongs to the
probability space with support Ξ = {ξ ∈ RN | 0 ≤ ξ < ∞}. We need two vectors for decision
variables to distinguish between the anticipative and adaptive policy:

• y0 ∈ Rn0 - a vector of first-stage decisions, which are made before the random variables are
observed; the decisions do not depend on the future observations but anticipate possible future
realizations of the random vector,

• y1(ξ) ∈ Rn1 - a random vector of second-stage decisions which are made after the random vari-
ables have been observed. They are constrained by decisions y0 and depend on the realizations
of the random vector ξ.

Once a first-stage decision y0 has been made, some realization of the random vector can be observed.
Then, the second-stage problem seeks a decision vector y1(ξ) that optimizes the function f1(y(ξ); ξ)
for a given value of the first-stage decision y0 and the random parameters {T0,1(ξ),W1(ξ), h1(ξ) | ξ ∈
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Ξ}. Combining both stages, we obtain the following model:

max
y0

f0(y0) + E

[
max
y1

f1(y1(ξ); ξ)

∣∣∣∣ F] , (14)

s.t. W0y0 = h0,

T0,1(ξ)y0 +W1(ξ)y1(ξ) = h1(ξ),

y0 ≥ 0, y1(ξ) ≥ 0.

The recourse problem can be extended to a multi-period stochastic programs, where observations
and decisions are made at T different stages, which correspond to time instances when some informa-
tion is revealed and a decision can be made. Let the random variable ξ have support Ξ1×Ξ2×· · ·ΞT
and the observations are captured in the information sets {Ft}Tt=1 with F1 ⊂ F2 ⊂ ... ⊂ FT . For each
stage t = 1, . . . , T, yt(ω) ∈ Rnt denotes the recourse decision variable vector optimizing the random
objective function ft(yt(ξt); ξt), given the random parameters {Tt−1,t(ωt),Wt(ωt), ht(ωt) | ξt ∈ Ξt}.
Then, the following actions are taken at each stage:

decision y0 → observation ξ1 := (T0,1,W1, h1) → decision y1 → · · ·
→ observation ξT := (TT−1,T ,WT , hT ) → decision yT ,

which can be formulated as the following multi-stage program:

max
y0

f0(y0) + E

[
max
y1

f1(y1; ξ1) + · · ·E
[

max
yT

fT (yT ; ξT )

∣∣∣∣ FT] . . . ∣∣∣∣ F1

]
, (15)

s.t. W0y0 = h0,

Tt−1,t(ξt)yt−1(ξt−1) +Wt(ξt)yt(ξt) = ht(ξt), t = 1, . . . , T,

y0 ≥ 0, yt(ξt) ≥ 0, t = 1, . . . , T.

By the tower property of conditional expectation we can rewrite the objective function of the above
problem as:

max
y0,y1,··· ,yT

f0(y0) +

T∑
t=1

E
[
ft(yt; ξt)

∣∣ F1

]
. (16)

Finally, if the random vector ξt has a discrete distribution with a finite number of possible realiza-
tions with the corresponding probabilities probn, the equation (16) can be rewritten as follows:

max
y0,y1,··· ,yT

f0(y0) +

T∑
t=1

∑
n∈Nt

ft(yt; ξt) · probn. (17)

B The end effect

The main drawback of multi-stage stochastic programs is the limited ability to handle many time
periods under sufficient uncertainty. The scenario tree grows exponentially with each time period,
therefore solving the problem becomes soon computationally intractable. To ensure, that the op-
timization problem covers the decisions for the entire lifetime of the individual, we incorporate
the end effect in the objective function of the MSP formulation, eq. (1). The end effect is equal
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to the optimal value function, which can be calculated explicitly using stochastic optimal control
(Hamilton-Jacobi-Bellman techniques), and covers the remaining years, i.e. the interval [T, T̃ ).
However, to be able to derive the explicit solution, we have to simplify the model by introducing
the following assumptions: i) a continuous-time setting, ii) no upper or lower bounds on the vari-
ables (such as those in equations (7)-(8) and (11)-(13)), iii) a risk-free return on cash, and iv) either
a deterministic or optimal death benefit; as it has been done in the classical literature on optimal
consumption and investment, (Merton, 1969, 1971) and life insurance, (Richard, 1975) and (Kraft
and Steffensen, 2008).

Assume that the economy is represented by a standard Brownian motion W defined on the
measurable space (Ω,F), where F is the natural filtration of W . The space is equipped with the
equivalent probability measures: objective measure P and the martingale measure P∗. The latter
is used by the insurer to price the financial assets and life insurance, and to calculate the level of
the benefits. The individual invests the proportion 1− Πt of her savings in a risk-free asset (cash)
with a constant interest rate r and Πt in a mutual fund consisting of N − 1 assets, which prices
are log-normally distributed. Then, the mutual fund follows the dynamics dSt = αStdt + σStdWt,
where

α =
∑N−1

i=1 θiαi, σ2 =
∑N−1

i=1

∑N−1
j=1 θiθjσij , dW =

∑N−1
i=1 θi

σi
σ dWi,

θi is the proportion of asset i in the mutual fund, and {αi, σij} define the physical distribution of
the returns. The assets are correlated with the coefficient corrij , thus σij = σiσjcorrij .

The mortality rates µt and νt are assumed to be continuous and deterministic, and are defined
by the jump intensities of the finite state Markov chain Z. Process Z is defined on the measurable
space (Ω,F) and is independent of the process W . We have calibrated νt to the Danish mortality
rates and obtained a satisfactory curve fit for a function

νt = a1 exp

(
−
(
t−b1
c1

)2
)

+ a2 exp

(
−
(
t−b2
c2

)2
)
, (18)

where constants a1, b1, c1, a2, b2, c2 are defined in Table 4. Data, which include the mortality im-
provements, can be downloaded from Danish Financial Supervisory Authority website, see (Fi-
nanstilsynet, 2012). We further assume that the subjective mortality rate µt is proportional to
νt.

During retirement, T ≥ TR, the dynamics of the savings account, while the person is alive, are
given by

dXt =
(
r + Πt(α− r)

)
Xtdt+ ΠtσXtdWt − νtBeqtdt+ νtXtdt−Btdt, (19)

X0 = xT ,

where (Xt, Bt, Beqt) are continuous-time variables corresponding to variables (
∑

iXi,t,n, Bt,n, Beqt,n)
defined in the MSP formulation. Note that in the continuous-time framework we do not distinguish
between the value of the savings before and after rebalancing. Moreover, rather than keeping the
track of the traded amounts, we calculate the optimal asset allocation Πt in the portfolio directly.
The The objective is to maximize the expected utility of total benefits and bequest, given that the
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individual is alive at time t and has Xt = xt on her savings account:

V (t, x) = sup
(Πt,Bt,Beqt)∈Q[t,T̃ )

Et,x

[∫ T̃

t
s−tp̃y+t

(
u(s, bstates +Bs) + µs k u(s,Beqs)

)
ds

]
,

V (T̃ , x) = 0.

The expression Et,x denotes the conditional expectation under P, whereas Q is the set of control
processes are admissible at time t. Both utilities are multiplied by the subjective probability that
the individual survives until time s > t, given she has survived until time t. The utility of bequest
is moreover multiplied by the probability of dying shortly after surviving until time s. Parameter
k denotes the weight on the bequest motive relatively to the benefits, and T̃ is a fixed time point
at which the individual is dead with certainty.

This simplified problem can be solved explicitly using the Hamilton-Jacobi-Bellman techniques.
In this appendix we derive the optimal value function and the optimal controls only for the period
after retirement, t > TR. The case for t ≤ TR, is slightly more complicated but can be derived in a
similar way.

Based on the savings dynamics, eq. (19), the HJB equation for the considered period is defined
as follows,

∂V (t,x)
∂t − µtV + sup

(Πt,Bt,Beqt)

{
1
γw

1−γ(Bt + bstatet )γ −Bt ∂V (t,x)
∂x + µtk

1
γw

1−γBeqγt − νtBeqt
∂V (t,x)
∂x

+ (r + Πt(α− r) + νt)x
∂V (t,x)
∂x + 1

2Π2
tσ

2x2 ∂2V (t,x)
∂x2

}
= 0,

V (T̃ , x) = 0.

We guess the solution

V (t, x) = 1
γ f

1−γ
t

(
x+ gt

)γ
(20)

and verify that it is correct. By plugging in the derivatives to the HJB equation we find the functions
gt and ft :

1−γ
γ f−γt

∂ft
∂t

(
x+ gt

)γ
+ f1−γ

t

(
x+ gt

)γ−1 ∂gt
∂t − µt

1
γ f

1−γ
t (x+ gt)

γ

+ 1
γw

1−γ(wt
ft

(x+ gt)
)γ − (wtft (x+ gt)− bstatet

)
f1−γ
t (x+ gt)

γ−1

+ µt
1
γkw

1−γ
(
k µtνt

)γ/(1−γ) wγt
fγt

(x+ gt)
γ − νt

(
k µtνt

)1/(1−γ)
wt
f (x+ gt) f

1−γ
t (x+ gt)

γ−1

+ (r + νt)xf
1−γ
t (x+ gt)

γ−1 − 1
1−γ

(α−r)2
2σ2 f1−γ

t (x+ gt)
γ = 0,

and obtain

gt =

∫ T̃

t
s−tpy+t e

−r(t−s) bstates ds, (21)

ft =

∫ T̃

t
(s−tp̃y+t)

1/(1−γ)(s−tpy+t)
−γ/(1−γ)e

γ
1−γ ϕ(t−s)

[
ws

(
1 +

(
k µs
νγs

)1/(1−γ)
)]

ds, (22)
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where s−tpy+t = e−
∫ s
t ντdτ , s−tp̃y+t = e−

∫ s
t µτdτ , and ϕ = r + (α−r)

2σ2(1−γ)
. The total optimal benefits

and the optimal size of death sum are given by:

∂
∂B : w1−γ(Bt + bstatet )γ−1 − ∂V (t,x)

∂x = 0

⇒ B∗t + bstatet = wt
ft

(x+ gt) = 1
ā∗t

(x+ gt), (23)

∂
∂Beq : µtkw

1−γ
t Beqγ−1

t − νt ∂V (t,x)
∂x = 0

⇒ Beq∗t =
(
k µtνt

)1/(1−γ)
wt
ft

(x+ gt) =
(
k µtνt

)1/(1−γ)
1
ā∗t

(x+ gt), (24)

where

ā∗t =

∫ T̃

t
e−

∫ s
t

(
µ̄τ+r̄

)
dτ

(
1 +

(
k µs
νγs

)1/(1−γ)
)
ds, (25)

and r̄ = 1
1−γρ −

γ
1−γϕ and µ̄t = 1

1−γµt −
γ

1−γ νt. The optimal proportion of the savings invested in
the mutual fund is given by

∂
∂Π : (α− r)x∂V (t,x)

∂x + Πtσ
2x2 ∂2V (t,x)

∂x2
= 0 ⇒ Π∗t = α−r

(1−γ)σ2
x+gt
x , (26)

and the proportions between the risky assets in the mutual fund are specified by the mutual fund
theorem, see (Merton, 1969) and (Richard, 1975):

∀i=1,...,N−1 θi =
∑N−1
j=1 [σij ]

−1(αj−r)∑N−1
i=1

∑N−1
j=1 [σij ]−1(αj−r)

,
∑
i

θi = 1. (27)

Real values Correlations
Asset class Long-term rate Volatility Cash Bonds Dom. stocks Int. stocks
Cash 0.7% 3.80% 1.00 0.30 -0.05 -0.03
Bonds 2.4% 7.10% 1.00 0.15 0.20
Dom. stocks 8.2% 19.7% 1.00 0.66
Int. stocks 7.3% 19.6% 1.00

a1 b1 c1 a2 b2 c2
νt -2.531 123.5 10.57 1.041e+15 660.7 93.88

Table 4: Statistical properties of the considered asset classes estimated as the historical real values, and constants for
the mortality rate model.
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