4,596 research outputs found

    Low temperature shape relaxation of 2-d islands by edge diffusion

    Full text link
    We present a precise microscopic description of the limiting step for low temperature shape relaxation of two dimensional islands in which activated diffusion of particles along the boundary is the only mechanism of transport allowed. In particular, we are able to explain why the system is driven irreversibly towards equilibrium. Based on this description, we present a scheme for calculating the duration of the limiting step at each stage of the relaxation process. Finally, we calculate numerically the total relaxation time as predicted by our results and compare it with simulations of the relaxation process.Comment: 11 pages, 5 figures, to appear in Phys. Rev.

    Determination of mean atmospheric densities from the explorer ix satellite

    Get PDF
    Mean atmospheric densities from changes in orbital elements of Explorer IX satellit

    Continuum description of profile scaling in nanostructure decay

    Full text link
    The relaxation of axisymmetric crystal surfaces with a single facet below the roughening transition is studied via a continuum approach that accounts for step energy g_1 and step-step interaction energy g_3>0. For diffusion-limited kinetics, free-boundary and boundary-layer theories are used for self-similar shapes close to the growing facet. For long times and g_3/g_1 < 1, (a) a universal equation is derived for the shape profile, (b) the layer thickness varies as (g_3/g_1)^{1/3}, (c) distinct solutions are found for different g_3/_1, and (d) for conical shapes, the profile peak scales as (g_3/g_1)^{-1/6}. These results compare favorably with kinetic simulations.Comment: 4 pages including 3 figure

    Low temperature/short duration steaming as a sustainable method of soil disinfection

    Get PDF
    This report was presented at the UK Organic Research 2002 Conference. Soil samples containing resting structures of fungal crop pathogens (Verticillium dahliae, Sclerotinia sclerotiorum, Sclerotium cepivorum, Pythium ultimum), potato cyst nematodes (Globodera rostochiensis and Globodera pallida) and weeds (Chenopodium album and Agropyron repens) were treated with aerated steam in the laboratory at temperatures ranging from 50–80oC in a specially constructed apparatus. Steaming at 50 or 60oC for three minutes, followed by an eight-minute resting period in the steamed soil and immediate removal from the soil thereafter, resulted in 100% kill of all weeds, fungi and nematodes. Low temperature/ short duration soil steaming could become a sustainable alternative to chemical or high-temperature steam soil disinfestation

    Profile scaling in decay of nanostructures

    Full text link
    The flattening of a crystal cone below its roughening transition is studied by means of a step flow model. Numerical and analytical analyses show that the height profile, h(r,t), obeys the scaling scenario dh/dr = F(r t^{-1/4}). The scaling function is flat at radii r<R(t) \sim t^{1/4}. We find a one parameter family of solutions for the scaling function, and propose a selection criterion for the unique solution the system reaches.Comment: 4 pages, RevTex, 3 eps figure

    Petrogenesis of diachronous mixed siliciclastic-carbonate megafacies in the cool-water Oligocene Tikorangi Formation, Taranaki Basin, New Zealand

    Get PDF
    The Oligocene (Whaingaroan-Waitakian) Tikorangi Formation is a totally subsurface, lithostratigraphically complex, mixed siliciclastic-limestone-rich sequence forming an important fracture reservoir within Taranaki Basin, New Zealand. Petrographically the formation comprises a spectrum of interbedded rock types ranging from calcareous mudstone to wackestone to packstone to clean sparry grainstone. Skeletal and textural varieties within these rock types have aided in the identification of three environmentally distinctive megafacies for the Tikorangi Formation rocks-shelfal, foredeep, and basinal. Data from these megafacies have been used to detail previous conclusions on the petrogenesis and to further refine depositional paleoenvironmental models for the Tikorangi Formation in the central eastern Taranaki Basin margin.Shelfal Megafacies 1 rocks (reference well Hu Road-1A) are latest Oligocene (early Waitakian) in age and formed on or proximal to the Patea-Tongaporutu-Herangi basement high. They are characterised by coarse, skeletal-rich, pure sparry grainstone comprising shallow water, high energy taxa (bryozoans, barnacles, red algae) and admixtures of coarse well-rounded lithic sand derived from Mesozoic basement greywacke. This facies type has previously gone unrecorded in the Tikorangi Formation. Megafacies 2 is a latest Oligocene (early Waitakian) foredeep megafacies (formerly named shelfal facies) formed immediately basinward and west of the shelfal basement platform. It accumulated relatively rapidly (>20 cm/ka) from redeposition of shelfal megafacies biota that became intermixed with bathyal taxa to produce a spectrum of typically mudstone through to sparry grainstone. The resulting skeletal mix (bivalve, echinoderm, planktic and benthic foraminiferal, red algal, bryozoan, nannofossil) is unlike that in any of the age-equivalent limestone units in neighbouring onland King Country Basin. Megafacies 3 is an Oligocene (Whaingaroan-Waitakian) offshore basinal megafacies (formerly termed bathyal facies) of planktic foraminiferal-nannofossil-siliciclastic wackestone and mudstone formed away from redepositional influences. The siliciclastic input in this distal basinal setting (sedimentation rates <7 mm/ka) was probably sourced mainly from oceanic currents carrying suspended sediment from South Island provenances exposed at this time.Tikorangi Formation rocks record the Taranaki Basin’s only period of carbonate-dominated sedimentation across a full range of shelfal, foredeep, and basinal settings. Depositional controls on the three contrasting megafacies were fundamentally the interplay of an evolving and complex plate tectonic setting, including development of a carbonate foredeep, changes in relative sea level within an overall transgressive regime, and changing availability, sources, and modes of deposition of both bioclastic and siliciclastic sediments. The mixed siliciclastic-carbonate nature of the formation, and its skeletal assemblages, low-Mg calcite mineralogy, and delayed deep burial diagenetic history, are features consistent with formation in temperate-latitude cool waters

    Changing shapes in the nanoworld

    Full text link
    What are the mechanisms leading to the shape relaxation of three dimensional crystallites ? Kinetic Monte Carlo simulations of fcc clusters show that the usual theories of equilibration, via atomic surface diffusion driven by curvature, are verified only at high temperatures. Below the roughening temperature, the relaxation is much slower, kinetics being governed by the nucleation of a critical germ on a facet. We show that the energy barrier for this step linearly increases with the size of the crystallite, leading to an exponential dependence of the relaxation time.Comment: 4 pages, 5 figures. Accepted by Phys Rev Let

    Failure to Downregulate the Epithelial Sodium Channel Causes Salt Sensitivity in Hsd11b2 Heterozygote Mice

    Get PDF
    In vivo, the enzyme 11ÎČ-hydroxysteroid dehydrogenase type 2 influences ligand access to the mineralocorticoid receptor. Ablation of the encoding gene, HSD11B2, causes the hypertensive syndrome of apparent mineralocorticoid excess. Studies in humans and experimental animals have linked reduced 11ÎČ-hydroxysteroid dehydrogenase type 2 activity and salt sensitivity of blood pressure. In the present study, renal mechanisms underpinning salt sensitivity were investigated in Hsd11b2(+/-) mice fed low-, standard-, and high-sodium diets. In wild-type mice, there was a strong correlation between dietary sodium content and fractional sodium excretion but not blood pressure. High sodium feeding abolished amiloride-sensitive sodium reabsorption, consistent with downregulation of the epithelial sodium channel. In Hsd11b2(+/-) mice, the natriuretic response to increased dietary sodium content was blunted, and epithelial sodium channel activity persisted. High-sodium diet also reduced renal blood flow and increased blood pressure in Hsd11b2(+/-) mice. Aldosterone was modulated by dietary sodium in both genotypes, and salt sensitivity in Hsd11b2(+/-) mice was associated with increased plasma corticosterone levels. Chronic administration of an epithelial sodium channel blocker or a glucocorticoid receptor antagonist prevented salt sensitivity in Hsd11b2(+/-) mice, whereas mineralocorticoid receptor blockade with spironolactone did not. This study shows that reduced 11ÎČ-hydroxysteroid dehydrogenase type 2 causes salt sensitivity of blood pressure because of impaired renal natriuretic capacity. This reflects deregulation of epithelial sodium channels and increased renal vascular resistance. The phenotype is not caused by illicit activation of mineralocorticoid receptors by glucocorticoids but by direct activation of glucocorticoid receptors
    • 

    corecore