6 research outputs found
Comparative exterior measures of pramenka sheep raised in three localities in Bosnia and Herzegovina
The aim of the research was to measure the basic external characteristics of Pramenka sheep (ridge height, from the ground to the highest ridge point, lower back height, from the ground to the highest lower back point, hull lenght, chest width, chest depth, chest circumference, hull circumference, shin circumference, body weight) with the aim of comparing the measured values in order to asses the impact of breeding areas on them. Domestic kind Pramenka (Kupres strain, VlaÅ”iÄ strain) were used in this research. There were 36 sheeps in the experimental group, and the same number in the control group. Experimets were performed on long-term purebred herds of Pramenka on three private farms in the Una-Sana Canton, 2 municipilities of Cazin, 1 municipality of BihaÄ, as well as on one private farm in Central Bosnia (area of the municipality of Travnik), and one in the municipality of Kupres (Livno Canton). Based on the presented average values of the external properties of Pramenka sheep and their variations for all examined localities, we can conclude the following: that the sheep are longer in relation to their height and that the Pramenka is of medium physical development, that the differences in body measures in the examined areas are greatly influenced by the origin of certain breeds of Pramenka sheep (Kupres strain, VlaÅ”iÄ strain), as well as the quality of pastures and unequal access to food. By comparing our results with the results of other authors who examined the exterior of other strains of Pramenka (from region in Croatia: Rab, Lika, Pag, Istria) in our wider enviroment concluded that VlaÅ”iÄ Pramenka is the largest strain of Pramenka in this area
Buckwheat in the nutrition of cock laying as a factor of egg quality
The subject of this paper is the research of the influence of different ratios of buckwheat, in concentrated feed, on the qualitative values of laying hen eggs. The study was conducted in four groups of laying hens: one control and three experimental, which were formed with respect to different proportions of buckwheat in meals. Within the first group of laying hens, a concentrated feed mixture with 10% relative share of buckwheat was used, within the second group with 20% relative share of buckwheat and within the third group with 30% relative share of buckwheat, while in the control group standard concentrated food was used. Based on the conducted research, it can be concluded that buckwheat in the meal of laying hens has positive effects on quality, physical properties, sensory properties and frequency of carrying. It was shown that there are statistically significant differences in mean values āāfor the following variables: protein content in egg white, protein content in egg yolk (%), fat content in egg yolk (%), where the highest value was recorded in the third group of laying hens. Also, statistically significant differences were found in terms of shell weight (g), shell thickness (mm), yolk diameter (mm) and egg white pH. The highest average frequency of egg laying was found in the first group and the lowest average frequency of egg laying was in the control group. The general conclusion is that buckwheat can be used in poultry feed, because it has a much greater positive than negative effect on the production and quality characteristics of eggs for consumption
Synthesis, characterization and bioactivity of selected metal complexes with imine ligands
The chemistry of complex compounds containing imine ligands is attracting significant attention from researchers today. In this work, complexes of selected transition metals (Cu, Co, Ni and Fe) with imines based on ninhydrin and amino acids methionine and cysteine were synthesized. FTIR and UV/VIS spectroscopy were used for structural characterization. Antioxidant activity of the complex was analyzed by the FRAP method. The synthesized compounds showed a significant reducing ability, ranging from 221.94 to 756.30 Āµmol/L. In vitro antimicrobial activity was tested on strains from the ATCC collection. Inhibitory activity against the tested microorganisms was recorded, and the zones of inhibition ranged from 10-24 mm. Preliminary research shows that these compounds have biological potency, but more detailed in vitro and in vivo studies are required for their use.</p
An assessment of regulation, education practices and socio-economic perceptions of non-native aquatic species in the Balkans
Alongside climate change, the introduction of non-native species (NNS) is widely recognized as one of the main threats to aquatic biodiversity and human wellbeing. Non-native species and biodiversity are generally low priority issues on the political agendas of many countries, particularly in European countries outside the European Union (EU). The objectives and tasks of this study were to address the policy regulation, education level, education practices, and socioeconomic perceptions of NNS in the Balkans. A questionnaire-based survey was conducted in Albania, Bosnia and Herzegovina, Montenegro, North Macedonia and Turkey (Balkan EU candidate and potential candidate members), in Croatia and Greece (Balkan EU Member States) and Italy (non-Balkan EU Member State). The EU Alien Regulation (1143/2014) concerning NNS is implemented in EU Member States and Montenegro, whereas Albania, Bosnia and Herzegovina and Turkey have not reported specific policy regulations for NNS. Permanent monitoring programmes specifically designed for NNS have not yet been established in the EU Member States. Most countries tackle the issue of NNS through educational activities as part of specific projects. Education level is indicative of the implementation of NNS policy regulation, and efforts are needed for the proper development of relative study programmes. Public awareness and educational preparedness concerning NNS in the Balkans were identified as poor. Strong programmes for management and education should be developed to increase public awareness to prevent further biodiversity losses in the Balkan region
Control of an unmaned aerial vehicle using a camera
V diplomski nalogi se lotimo naloge vodenja kvadrokopterja skozi poligon obroÄev,
ki imajo na spodnji strani nameÅ”Äeno ArUco znaÄko.
Prvi korak je modeliranje gibanja letanika s prenosnimi funkcijami, posamezno
za vsako prostorno stopnjo premika. S pomoÄjo StrejÄeve metode identificiramo
prenosne funkcije in prilagodimo parametre tako, da se ujemajo s posnetim signalom odziva realnega sistmea pri vzbujanju s stopniÄastim vhodnim signalom. Na
osnovi dokonÄanih modelov izberemo vrsto regulatorja ter ga naÄrtamo, spet, za
vsak premik posamezno. V nadaljevanju analiziramo stabilnost zaprtozanÄnega
sistema s pomoÄjo Nyqustiovega in Bodejevega diagrama in prilagodimo konstante regulatorja tako, da je model robustno stabilen. Ko imamo vse parametre
regulatorja, regulator implementiramo v programsko kodo in poskus izvedemo na
letalniku. V teku poskusa snemamo izhodne signale, da jih lahko primerjamo s
simuliranimi.In the thesis we address the problem of controlling a quad-copter trough a polygon
of rings witch have an ArUco marker on the bottom.
The first step is to model droneās movements with transfer functions for each
degree of freedom individually. With the use of Strejc method we identify transfer functions and adjust parameters in such a way that the signals of the models
match recorded output of a real system when the input is a step function signal.
On the basis of finished models we pick a controller and construct it, once again,
for each degree of freedom individually. In continuation, we analyze stability
with Nyquist and Bode diagrams and adjust controller constants so the model is
robustly stable. Once we have all controller parameters, the controller is implemented in the code and the experiment is done on the real drone. During the
experiment, we record all output signals so we can compare them to simulated
ones
IzboljÅ”anje zaznavanja objektov v naprednih sistemih za pomoÄ voznikom z uporabo sintetiÄnih vremenskih razmer
Ensuring reliable object detection under adverse weather conditions, such as rain
and snow, remains a significant challenge for visual sensing in the automotive
world. These conditions can severely impact the performance of sensors, leading
to reduced accuracy in object detection and an increased risk of accidents.
This thesis focuses on enhancing object detection capabilities in ADAS/ADS
by incorporating synthetic weather condition images into the training process
in order to improve object detection in those conditions. Utilizing generative
models we simulate the effects of adversarial weather on driving images in both
city and highway environments. The primary objective is to create a comprehensive
dataset of synthetic weather images, which, when integrated into the training
pipeline for object detection, can improve the robustness of object detection models
under adverse weather conditions.
Our findings demonstrate that integrating synthetic weather images into the
training process significantly enhances the performance of object detection models,
making them more resilient to adverse weather conditions. This research not
only addresses a critical safety concern in the automotive industry but also paves
the way for future advancements in the field of autonomous driving.Zagotavljanje zanesljivega zaznavanja objektov v neugodnih vremenskih
razmerah, kot sta dež in sneg, ostaja velik izziv za vizualne senzorje v avtomobilskem
svetu. Te razmere lahko resno vplivajo na delovanje senzorjev, kar vodi
do zmanjÅ”ane natanÄnosti zaznavanja objektov in poveÄanega tveganja nesreÄ.
Ta magistrska naloga se osredotoÄa na izboljÅ”anje zmogljivosti zaznavanja
objektov v naprednih sistemih za pomoÄ voznikom (ADAS) in sistemih za
avtonomno vožnjo (ADS) z vkljuÄevanjem slik sintetiÄnih vremenskih razmer v
proces uÄenja, da bi izboljÅ”ali zaznavanje objektov v teh pogojih. S pomoÄjo
generativnih modelov simuliramo uÄinke neugodnih vremenskih razmer na slike
vožnje tako v mestnem kot avtocestnem okolju. Glavni cilj je ustvariti obsežen
nabor sintetiÄnih vremenskih slik, ki lahko, ko so vkljuÄene v uÄni proces zaznavanja
objektov, izboljŔajo robustnost modelov zaznavanja objektov v neugodnih
vremenskih razmerah.
Pregledali smo prejÅ”nje raziskave na podroÄju generativnih modelov za slike
in njihovih aplikacij pri simulaciji razliÄnih vremenskih razmer. Obravnavali smo
metode, kot so generativni nasprotniki modeli, ter izpostavili potrebo po bolj
robustnih in natanÄnih metodah za simulacijo vremenskih razmer v mestnem in
avtocestnem okolju. Poleg pregleda generativnih modelov smo pregledali tudi
evalvacijske mere za kakovost generiranih slik ter priÅ”li do zakljuÄka, da trenutno
ne obstaja ena mera, ki nam pove, kako dobra je sintetiÄna slika. Pregled literature
obsega tudi pregled metod zaznavanja objektov pri ADAS/ADS ter težave
vizualnih senzorjev pri neugodnih vremenskih razmerah.
V tretjem poglavju opisujemo uporabljene metode, ki vkljuÄujejo generativne
modele, zlasti GAN arhitekturo, za simulacijo uÄinkov dežja in snega na slike vožnje. Podrobno smo predstavili ozadje ter kriterijske funkcije modela QS-Attn,
ki omogoÄa natanÄno ustvarjanje vremenskih uÄinkov z uporabo pozornostnih
mehanizmov za izbiro najpomembnejÅ”ih znaÄilnosti slik.
Za treniranje QS-Attn modela potrebujemo podatke, in ker jih na trgu ne
dobimo na enostaven naÄin, smo posneli svoje podatke vožnje. Razvili smo lastni
nabor podatkov, ki se imenuje pozicijsko-uparen nabor, ki vkljuÄuje slike vožnje
v razliÄnih vremenskih razmerah, posnete na enakih lokacijah v suhem vremenu,
dežju in snegu. Ta nabor podatkov omogoÄa modelom, da se lažje nauÄijo razlik
med razliÄnimi vremenskimi pogoji, ter nam olajÅ”a evalvacijo.
Peto poglavje opisuje rezultate QS-Attn modela. Vidimo, da z naŔim naborom
podatkov, ko je model natreniran, dobimo vizualno dobre rezultate. Kakovost
vseh slik izmerimo z v literaturi popularnimi merami, kot so FID in KID, obe
z razliÄnimi verzijami luÅ”Äenja znaÄilk. Rezultate tudi kvalitativno primerjamo
z dejanskimi slikami dežja in snega. Model QS-Attn testiramo tudi na dodatnem
naboru podatkov, ki ni del originalnega, ter na slikah popolnoma izven
razpodelitve.
V Ŕestem poglavju pokažemo, kako model za zaznavanje vozil, treniran samo
na slikah zajetih v suhem vremenu, deluje v dežju in snegu. Rezultate prikažemo
kvantitativno in kvalitativno. Ugotovitve so, da model, treniran samo na suhih
slikah, ne zadostuje izzivom, kot so dež in sneg, in ima resne probleme pri zaznavanju
objektov. TakŔni modeli pogosto ne zaznajo vozil, ki so ravno pred kamero,
zaradi okoliÅ”Äin, kot so vklopljene luÄi ali delna pokritost s snegom.
V sedmem poglavju preverimo, kaj se dogaja z modeli za zaznavanje objektov,
Äe v nabor podatkov za trening uporabimo prave slike, sintetiÄne slike in
kombinacijo pravih in sintetiÄnih slik dežja ter snega. Izkazalo se je, da lahko s
tem znatno izboljŔamo zaznavanje v obeh vremenskih razmerah. Modeli imajo
veÄ pozitivnih zaznavanj in so sploÅ”no bolj robustni.
NaÅ”e ugotovitve kažejo, da vkljuÄitev sintetiÄnih vremenskih slik v uÄni proces
znatno izboljÅ”a zmogljivost modelov zaznavanja objektov, zaradi Äesar so bolj
odporni na neugodne vremenske razmere. Ta raziskava ne samo da naslavlja
kritiÄno varnostno vpraÅ”anje v avtomobilski industriji, ampak tudi odpira pot za
prihodnje napredke na podroÄju avtonomne vožnje