105 research outputs found

    Process for the preparation of low molecular weight aromatics (btx) and biofuels from biomass

    Get PDF
    A process for the prepn. of arom. compds. from a feed stream contg. biomass or mixts. of biomass, the process comprising: a) subjecting a feed stream contg. biomass or mixts. of biomass to a process to afford a conversion product comprising arom. compds.; b) recovering the arom. compds. from said conversion product; c) sepg. a higher mol. wt. fraction comprising polyarom. hydrocarbons (PAH) from a lower mol. wt. fraction comprising benzene, toluene and xylene (BTX) by distn.; d) reducing at least part of said higher mol. wt. fraction to obtain a reduced fraction comprising polycyclic aliphatics (PCA); and e) subjecting the higher mol. wt. fraction obtained in step c), the reduced fraction obtained in step d), or a mixt. thereof, to a process to obtain lower mol. wt. aroms. (BTX). [on SciFinder(R)

    An improved catalytic pyrolysis concept for renewable aromatics from biomass involving a recycling strategy for co-produced polycyclic aromatic hydrocarbons

    Get PDF
    Catalytic pyrolysis of crude glycerol over a shaped H-ZSM-5 zeolite catalyst with (partial) recycling of the product oil was studied with the incentive to improve benzene, toluene, and xylene (BTX) yields. Recycling of the polycyclic aromatic hydrocarbon (PAH) fraction, after separation from BTX by distillation and co-feeding with the crude glycerol feed, was shown to have a positive effect on the BTX yield. Further improvements were achieved by hydrogenation of the PAH fraction using a Ru/C catalyst and hydrogen gas prior to co-pyrolysis, and BTX yields up to 16 wt% on feed were obtained. The concept was also shown to be beneficial to other biomass feeds such as e.g., Kraft lignin, cellulose, and Jatropha oil

    Catalytic pyrolysis of crude glycerol over shaped ZSM-5/bentonite catalysts for bio-BTX synthesis

    Get PDF
    Ex-situ catalytic pyrolysis of crude glycerol for the synthesis of bio-based benzene, toluene and xylenes (bio-BTX) was performed in a tandem micro-reactor (TMR), a batch gram scale reactor and a continuous integrated bench scale unit using ZSM-5/bentonite extrudates. A bio-BTX yield of 8.1 wt.% (14.6% carbon yield) based on crude glycerol was obtained over the fresh catalysts (Cat-F) in the bench scale unit (crude glycerol feed rate of 200 g h−1, pyrolysis temperature of 520 °C and catalytic upgrading temperature of 536 °C). Catalyst activity was shown to be a function of the time on stream (TOS) and after 4.7 h the activity dropped with about 8%. After an oxidative regeneration step to remove coke, the activity of the regenerated catalysts (Cat-R1) was recovered to 95% of the original catalyst activity. After 11 reaction-regeneration cycles, the bio-BTX yield decreased to 5.4 wt.% (9.7% carbon yield) over Cat-R11. The fresh, deactivated and regenerated ZSM-5/bentonite catalysts were characterized in detail using nitrogen physisorption, XRD, ICP-AES, EA, TEM-EDX, TGA, NH3-TPD, pyridine-IR and solid MAS NMR. Coke (10.5 wt.% over Cat-D) was mostly deposited on ZSM-5 planes, and not only decreased the number of Lewis and Brönsted acid sites, but also blocked the pores, resulting in catalyst deactivation. Coke removal was effectively performed using an oxidative treatment. However, exchange of cations (e.g., Na) of the bentonite and possibly also from the crude glycerol feed with protons of ZSM-5 was observed, leading to irreversible deactivation. Furthermore, the layered structure of bentonite collapsed due to the removal of interlamellar water and dehydroxylation

    Effects of substituents in the iodine-catalyzed isomerization of cis-stilbene

    Get PDF
    Contains fulltext : mmubn000001_218942052.pdf (publisher's version ) (Open Access)Promotor : R. Nivard100 p
    • …
    corecore