502 research outputs found

    Theory and numerical modeling of electrical self-potential signatures of unsaturated flow in melting snow

    Get PDF
    We have developed a new theory and numerical model of electrical self-potential (SP) signals associated with unsaturated flow in melting snow. The model is applicable to continuous natural-melt and transient-flow phenomena such as melt-water pulses, and is tested using laboratory column experiments. SP signals fundamentally depend on the temporal evolution of snow porosity and melt-water flux, electrical conductivity (EC) and pH. We infer a reversal of the sign of the zeta potential (a fundamental electrical property of grain surfaces in porous media), consistent with well-known elution sequences of ions that cause progressive increases and decreases in melt-water pH and EC respectively. Injection of fully-melted snow samples, containing the entire natural range of ions, into melting snow columns caused additional temporary reversals of the sign of the zeta potential. Widely-used empirical relationships between effective saturation, melt-water fraction, EC and pH, as well as snow porosity, grain size and permeability are found to be robust for modelling purposes. Thus, non-intrusive SP measurements can serve as proxies for snow melt-water fluxes and the temporal evolution of fundamental snow textural, hydraulic or water-quality parameters. Adaptation of automated multi-sensor SP acquisition technology from other environmental applications thus promises to bridge the widely acknowledged gap in spatial scale between satellite remote sensing and point measurements of snow properties. SP measurements and modelling may therefore contribute to solving a wide range of problems related to the assessment of water resource availability, avalanche or flood risk, or amplification of climatic forcing of ice-shelf, ice-sheet or glacier dynamics

    Dynamics of Wetting Fronts in Porous Media

    Full text link
    We propose a new phenomenological approach for describing the dynamics of wetting front propagation in porous media. Unlike traditional models, the proposed approach is based on dynamic nature of the relation between capillary pressure and medium saturation. We choose a modified phase-field model of solidification as a particular case of such dynamic relation. We show that in the traveling wave regime the results obtained from our approach reproduce those derived from the standard model of flow in porous media. In more general case, the proposed approach reveals the dependence of front dynamics upon the flow regime.Comment: 4 pages, 2 figures, revte

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Full text link
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described

    First observations of separated atmospheric nu_mu and bar{nu-mu} events in the MINOS detector

    Get PDF
    The complete 5.4 kton MINOS far detector has been taking data since the beginning of August 2003 at a depth of 2070 meters water-equivalent in the Soudan mine, Minnesota. This paper presents the first MINOS observations of nuµ and [overline nu ]µ charged-current atmospheric neutrino interactions based on an exposure of 418 days. The ratio of upward- to downward-going events in the data is compared to the Monte Carlo expectation in the absence of neutrino oscillations, giving Rup/downdata/Rup/downMC=0.62-0.14+0.19(stat.)±0.02(sys.). An extended maximum likelihood analysis of the observed L/E distributions excludes the null hypothesis of no neutrino oscillations at the 98% confidence level. Using the curvature of the observed muons in the 1.3 T MINOS magnetic field nuµ and [overline nu ]µ interactions are separated. The ratio of [overline nu ]µ to nuµ events in the data is compared to the Monte Carlo expectation assuming neutrinos and antineutrinos oscillate in the same manner, giving R[overline nu ][sub mu]/nu[sub mu]data/R[overline nu ][sub mu]/nu[sub mu]MC=0.96-0.27+0.38(stat.)±0.15(sys.), where the errors are the statistical and systematic uncertainties. Although the statistics are limited, this is the first direct observation of atmospheric neutrino interactions separately for nuµ and [overline nu ]µ
    corecore