25 research outputs found

    Self-reported reactogenicity of CoronaVac (Sinovac) compared with Comirnaty (Pfizer-BioNTech): A prospective cohort study with intensive monitoring

    Get PDF
    OBJECTIVE: CoronaVac (Sinovac) Covid-19 vaccine has recently been approved for emergency use by the World Health Organization. However, data on its reactogenicity in real-world settings is scant. This study aimed to compare self-reported post-vaccination adverse reactions between CoronaVac and Comirnaty (Pfizer-BioNTech). METHODS: We adopted a prospective cohort study design using online surveys from the day of first-dose vaccination with intensive follow-up through two weeks after the second dose (11 time points). The primary outcome was adverse reactions (any versus none) and secondary outcomes were the sub-categories of adverse reactions (local, systemic, and severe allergic reactions). Potential effect modification across multimorbidity status, older age, and sex was examined. RESULTS: In total, 2,098 participants who were scheduled to complete the 14th-day survey were included, with 46.2% receiving Comirnaty. Retention rate two weeks after the second dose was 81.0% for the CoronaVac group and 83.6% for the Comirnaty group. Throughout the follow-up period, 801 (82.7%) of those receiving Comirnaty and 543 (48.1%) of those receiving CoronaVac reported adverse reactions. Adjusted analysis suggested that compared with Comirnaty, CoronaVac was associated with 83%-reduced odds of any adverse reactions [adjusted odds ratio (AOR) = 0.17, 95% confidence interval (CI) 0.15–0.20], 92%-reduced odds of local adverse reactions (AOR = 0.08, 95% CI 0.06–0.09), and 76%-reduced odds of systemic adverse reactions (AOR = 0.24, 95% CI 0.16–0.28). No significant effect modification was identified. CONCLUSION: This post-marketing study comparing the reactogenicity of Covid-19 vaccines suggests a lower risk of self-reported adverse reactions following vaccination with CoronaVac compared with Comirnaty

    The chromatin remodelling enzymes SNF2H and SNF2L position nucleosomes adjacent to CTCF and other transcription

    Get PDF
    Within the genomes of metazoans, nucleosomes are highly organised adjacent to the binding sites for a subset of transcription factors. Here we have sought to investigate which chromatin remodelling enzymes are responsible for this. We find that the ATP-dependent chromatin remodelling enzyme SNF2H plays a major role organising arrays of nucleosomes adjacent to the binding sites for the architectural transcription factor CTCF sites and acts to promote CTCF binding. At many other factor binding sites SNF2H and the related enzyme SNF2L contribute to nucleosome organisation. The action of SNF2H at CTCF sites is functionally important as depletion of CTCF or SNF2H affects transcription of a common group of genes. This suggests that chromatin remodelling ATPase's most closely related to the Drosophila ISWI protein contribute to the function of many human gene regulatory elements

    Bidirectional transcription initiation marks accessible chromatin and is not specific to enhancers

    Get PDF
    Abstract Background Enhancers are modular regulatory elements that are central to the spatial and temporal regulation of gene expression. Bidirectional transcription initiating at enhancers has been proposed to mark active enhancers and as such has been utilized to experimentally identify active enhancers de novo. Results Here, we show that bidirectional transcription initiation is a pervasive feature of accessible chromatin, including at enhancers, promoters, and other DNase hypersensitive regions not marked with canonical histone modification profiles. Transcription is less predictive for enhancer activity than epigenetic modifications such as H3K4me1 or the accessibility of DNA when measured both in enhancer assays and at endogenous loci. The stability of enhancer initiated transcripts does not influence measures of enhancer activity and we cannot detect evidence of purifying selection on the resulting enhancer RNAs within the human population. Conclusions Our results indicate that bidirectional transcription initiation from accessible chromatin is not sufficient for, nor specific to, enhancer activity. Transcription initiating at enhancers may be a frequent by-product of promiscuous RNA polymerase initiation at accessible chromatin and is unlikely to generally play a functional role in enhancer activity

    Long non-coding RNAs and enhancer RNAs regulate the lipopolysaccharide-induced inflammatory response in human monocytes

    Get PDF
    Early reports indicate that long non-coding RNAs (lncRNAs) are novel regulators of biological responses. However, their role in the human innate immune response, which provides the initial defence against infection, is largely unexplored. To address this issue, here we characterize the long non-coding RNA transcriptome in primary human monocytes using RNA sequencing. We identify 76 enhancer RNAs (eRNAs), 40 canonical lncRNAs, 65 antisense lncRNAs and 35 regions of bidirectional transcription (RBT) that are differentially expressed in response to bacterial lipopolysaccharide (LPS). Crucially, we demonstrate that knockdown of nuclear-localized, NF-κB-regulated, eRNAs (IL1β-eRNA) and RBT (IL1β-RBT46) surrounding the IL1β locus, attenuates LPS-induced messenger RNA transcription and release of the proinflammatory mediators, IL1β and CXCL8. We predict that lncRNAs can be important regulators of the human innate immune response

    Lungs can tell time-a highlight from 2016 ATS session on clock genes, inflammation, immunology, and sleep

    No full text
    This paper goes back over the progressive and continuous increase of the “unskilled employees” observed in the French labor market. This analysis is undertaken through the relations between this category and equality policies: Who are the unskilled employees in France? How can the recent growth of this category be explained? What is the place devoted to this category in the recent French gender equality policies? Gadrey.N, Jany-Catrice.F, Pernod-Lemattre.M, Socio-Économie du Travail n°30 (Éco..

    lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs

    No full text
    While recent studies indicated roles of long non-coding RNAs (lncRNAs) in physiologic aspects of cell-type determination and tissue homeostasis(1) yet their potential involvement in regulated gene transcription programs remain rather poorly understood. Androgen receptor (AR) regulates a large repertoire of genes central to the identity and behavior of prostate cancer cells(2), and functions in a ligand-independent fashion in many prostate cancers when they become hormone refractory after initial androgen deprivation therapy(3). Here, we report that two lncRNAs highly overexpressed in aggressive prostate cancer, PRNCR1 and PCGEM1, bind successively to the AR and strongly enhance both ligand-dependent and ligand-independent AR-mediated gene activation programs and proliferation in prostate cancer cells. Binding of PRNCR1 to the C-terminally acetylated AR on enhancers and its association with DOT1L appear to be required for recruitment of the second lncRNA, PCGEM1, to the DOT1L-mediated methylated AR N-terminus. Unexpectedly, recognition of specific protein marks by PCGEM1-recruited Pygopus2 PHD domain proves to enhance selective looping of AR-bound enhancers to target gene promoters in these cells. In “resistant” prostate cancer cells, these overexpressed lncRNAs can interact with, and are required for, the robust activation of both truncated and full length AR, causing ligand-independent activation of the AR transcriptional program and cell proliferation. Conditionally-expressed short hairpin RNA (shRNA) targeting of these lncRNAs in castration-resistant prostate cancer (CRPC) cell lines strongly suppressed tumor xenograft growth in vivo. Together, these results suggest that these overexpressed lncRNAs can potentially serve as a required component of castration-resistance in prostatic tumors
    corecore