20 research outputs found

    Oxidised- and total non-protein bound glutathione and related thiols in gallbladder bile of patients with various gastrointestinal disorders

    Get PDF
    BACKGROUND: Glutathione is a tripeptide composed of glutamate, cysteine and glycine, accomplishing a broad range of vital functions. Synthesis of glutathione and cysteine is performed mainly in the liver, whereas most other tissues are supplied with these thiols via sinusoidal efflux into the blood. Since canalicular efflux also occurs, thiols may be present in human bile. However, thiol composition of human gallbladder bile is largely unknown, which makes it difficult to speculate on the exact function of thiols in bile. In this study we report on the levels of non-protein bound thiols in gallbladder bile of patients with various gastrointestinal disorders. METHODS: Gallbladder bile was obtained after cholecystectomy from 30 patients who were operated for pancreatic cancer, duodenal cancer, chronic pancreatitis or cholecystolithiasis. Bile was analysed for non-protein bound total- and oxidised glutathione and related thiols, by high performance liquid chromatography. RESULTS: A more than 100-fold inter-individual variation in non-protein bound thiol levels was found in human gallbladder bile of patients with a variety of gastrointestinal disorders. Bile did contain high amounts of cysteine, whereas much lower levels of glutathione, cysteinylglycine and homocysteine were detected. Most thiols were present in their oxidised forms. CONCLUSION: Thiols are present in considerable amounts in human gallbladder bile of patients with various gastrointestinal disorders, levels of cysteine being much higher than those of glutathione and other thiols. Most thiols were in their oxidised forms, which may indicate the presence of considerable chemical- or oxidative stress in the patients studied here

    Determination of glucose exchange rates and permeability of erythrocyte membrane in preeclampsia and subsequent oxidative stress-related protein damage using dynamic-19F-NMR

    Get PDF
    The cause of the pregnancy condition preeclampsia (PE) is thought to be endothelial dysfunction caused by oxidative stress. As abnormal glucose tolerance has also been associated with PE, we use a fluorinated-mimic of this metabolite to establish whether any oxidative damage to lipids and proteins in the erythrocyte membrane has increased cell membrane permeability. Data were acquired using 19F Dynamic-NMR (DNMR) to measure exchange of 3-fluoro-3-deoxyglucose (3-FDG) across the membrane of erythrocytes from 10 pregnant women (5 healthy control women, and 5 from women suffering from PE). Magnetisation transfer was measured using the 1D selective inversion and 2D EXSY pulse sequences, over a range of time delays. Integrated intensities from these experiments were used in matrix diagonalisation to estimate the values of the rate constants of exchange and membrane permeability. No significant differences were observed for the rate of exchange of 3-FDG and membrane permeability between healthy pregnant women and those suffering from PE, leading us to conclude that no oxidative damage had occurred at this carrier-protein site in the membrane
    corecore