180 research outputs found

    Characterization of ERK Docking Domain Inhibitors that Induce Apoptosis by Targeting Rsk-1 and Caspase-9

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The extracellular signal-regulated kinase-1 and 2 (ERK1/2) proteins play an important role in cancer cell proliferation and survival. ERK1/2 proteins also are important for normal cell functions. Thus, anti-cancer therapies that block all ERK1/2 signaling may result in undesirable toxicity to normal cells. As an alternative, we have used computational and biological approaches to identify low-molecular weight compounds that have the potential to interact with unique ERK1/2 docking sites and selectively inhibit interactions with substrates involved in promoting cell proliferation.</p> <p>Methods</p> <p>Colony formation and water soluble tetrazolium salt (WST) assays were used to determine the effects of test compounds on cell proliferation. Changes in phosphorylation and protein expression in response to test compound treatment were examined by immunoblotting and <it>in vitro </it>kinase assays. Apoptosis was determined with immunoblotting and caspase activity assays.</p> <p>Results</p> <p><it>In silico </it>modeling was used to identify compounds that were structurally similar to a previously identified parent compound, called <b>76</b>. From this screen, several compounds, termed <b>76.2</b>, <b>76.3</b>, and <b>76.4 </b>sharing a common thiazolidinedione core with an aminoethyl side group, inhibited proliferation and induced apoptosis of HeLa cells. However, the active compounds were less effective in inhibiting proliferation or inducing apoptosis in non-transformed epithelial cells. Induction of HeLa cell apoptosis appeared to be through intrinsic mechanisms involving caspase-9 activation and decreased phosphorylation of the pro-apoptotic Bad protein. Cell-based and <it>in vitro </it>kinase assays indicated that compounds <b>76.3 </b>and <b>76.4 </b>directly inhibited ERK-mediated phosphorylation of caspase-9 and the p90Rsk-1 kinase, which phosphorylates and inhibits Bad, more effectively than the parent compound <b>76</b>. Further examination of the test compound's mechanism of action showed little effects on related MAP kinases or other cell survival proteins.</p> <p>Conclusion</p> <p>These findings support the identification of a class of ERK-targeted molecules that can induce apoptosis in transformed cells by inhibiting ERK-mediated phosphorylation and inactivation of pro-apoptotic proteins.</p

    IFN-λ3, not IFN-λ4, likely mediates IFNL3-IFNL4 haplotype-dependent hepatic inflammation and fibrosis

    Get PDF
    Genetic variation in the IFNL3-IFNL4 (interferon-λ3-interferon-λ4) region is associated with hepatic inflammation and fibrosis. Whether IFN-λ3 or IFN-λ4 protein drives this association is not known. We demonstrate that hepatic inflammation, fibrosis stage, fibrosis progression rate, hepatic infiltration of immune cells, IFN-λ3 expression, and serum sCD163 levels (a marker of activated macrophages) are greater in individuals with the IFNL3-IFNL4 risk haplotype that does not produce IFN-λ4, but produces IFN-λ3. No difference in these features was observed according to genotype at rs117648444, which encodes a substitution at position 70 of the IFN-λ4 protein and reduces IFN-λ4 activity, or between patients encoding functionally defective IFN-λ4 (IFN-λ4-Ser70) and those encoding fully active IFN-λ4-Pro70. The two proposed functional variants (rs368234815 and rs4803217) were not superior to the discovery SNP rs12979860 with respect to liver inflammation or fibrosis phenotype. IFN-λ3 rather than IFN-λ4 likely mediates IFNL3-IFNL4 haplotype-dependent hepatic inflammation and fibrosis

    Gait stability and variability measures show effects of impaired cognition and dual tasking in frail people

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Falls in frail elderly are a common problem with a rising incidence. Gait and postural instability are major risk factors for falling, particularly in geriatric patients. As walking requires attention, cognitive impairments are likely to contribute to an increased fall risk. An objective quantification of gait and balance ability is required to identify persons with a high tendency to fall. Recent studies have shown that stride variability is increased in elderly and under dual task condition and might be more sensitive to detect fall risk than walking speed. In the present study we complemented stride related measures with measures that quantify trunk movement patterns as indicators of dynamic balance ability during walking. The aim of the study was to quantify the effect of impaired cognition and dual tasking on gait variability and stability in geriatric patients.</p> <p>Methods</p> <p>Thirteen elderly with dementia (mean age: 82.6 ± 4.3 years) and thirteen without dementia (79.4 ± 5.55) recruited from a geriatric day clinic, walked at self-selected speed with and without performing a verbal dual task. The Mini Mental State Examination and the Seven Minute Screen were administered. Trunk accelerations were measured with an accelerometer. In addition to walking speed, mean, and variability of stride times, gait stability was quantified using stochastic dynamical measures, namely regularity (sample entropy, long range correlations) and local stability exponents of trunk accelerations.</p> <p>Results</p> <p>Dual tasking significantly (p < 0.05) decreased walking speed, while stride time variability increased, and stability and regularity of lateral trunk accelerations decreased. Cognitively impaired elderly showed significantly (p < 0.05) more changes in gait variability than cognitive intact elderly. Differences in dynamic parameters between groups were more discerned under dual task conditions.</p> <p>Conclusions</p> <p>The observed trunk adaptations were a consistent instability factor. These results support the concept that changes in cognitive functions contribute to changes in the variability and stability of the gait pattern. Walking under dual task conditions and quantifying gait using dynamical parameters can improve detecting walking disorders and might help to identify those elderly who are able to adapt walking ability and those who are not and thus are at greater risk for falling.</p

    Nutritional and environmental regulation of the synthesis of highly unsaturated fatty acids and of fatty-acid oxidation in Atlantic salmon (Salmo salar L.) enterocytes and hepatocytes

    Get PDF
    The aim was to determine if highly unsaturated fatty acid (HUFA) synthesis and fatty acid oxidation in Atlantic salmon (Salmo salar L.) intestine was under environmental and/or seasonal regulation. Triplicate groups of salmon were grown through a full two-year cycle on two diets containing either fish oil (FO), or a diet with 75% of the FO replaced by a vegetable oil (VO) blend containing rapeseed, palm and linseed oils. At key points in the life cycle, fatty acyl desaturation/elongation (HUFA synthesis) and oxidation activities were determined in enterocytes and hepatocytes using [1-14C]18:3n-3 as substrate. As observed previously, HUFA synthesis in hepatocytes showed peak activity at seawater transfer and declined thereafter, with activity consistently greater in fish fed the VO diet. In fish fed FO, HUFA synthesis in enterocytes in the freshwater stage was at a similar level to that in hepatocytes. However, HUFA synthesis in enterocytes increased rapidly after seawater transfer and remained high for some months after transfer before decreasing to levels that were again similar to those observed in hepatocytes. Generally, enterocyte HUFA synthesis was higher in fish fed the VO diet compared to the FO diet. Oxidation of [1-14C]18:3n-3 in hepatocytes from fish fed FO tended to decrease during the freshwater phase but then increased steeply, peaking just after transfer before decreasing during the remaining seawater phase. At the peak in oxidation activity around seawater transfer, activity was significantly lower in fish fed VO compared to fish fed FO. In enterocytes, oxidation of [1-14C]18:3 in fish fed FO showed a peak in activity just prior to seawater transfer. In fish fed VO, other than high activity at 9 months, the pattern was similar to that obtained in enterocytes from fish fed FO with a high activity around seawater transfer and declining activity in seawater. In conclusion, fatty acid metabolism in intestinal cells appeared to be under dual nutritional and environmental or seasonal regulation. The temporal patterns for fatty acid oxidation were generally similar in the two cell types, but HUFA synthesis in enterocytes peaked over the summer seawater phase rather than at transfer, as with hepatocytes, suggesting possibly different regulatory cues

    Poly(ethylmethacrylate-co-diethylaminoethyl acrylate) coating improves endothelial re-population, bio-mechanical and anti-thrombogenic properties of decellularized carotid arteries for blood vessel replacement

    Get PDF
    Decellularized vascular scaffolds are promising materials for vessel replacements. However, despite the natural origin of decellularized vessels, issues such as biomechanical incompatibility, immunogenicity risks and the hazards of thrombus formation, still need to be addressed. In this study, we coated decellularized vessels obtained from porcine carotid arteries with poly (ethylmethacrylate-co-diethylaminoethylacrylate) (8g7) with the purpose of improving endothelial coverage and minimizing platelet attachment while enhancing the mechanical properties of the decellularized vascular scaffolds. The polymer facilitated binding of endothelial cells (ECs) with high affinity and also induced endothelial cell capillary tube formation. In addition, platelets showed reduced adhesion on the polymer under flow conditions. Moreover, the coating of the decellularized arteries improved biomechanical properties by increasing its tensile strength and load. In addition, after 5 days in culture, ECs seeded on the luminal surface of 8g7-coated decellularized arteries showed good regeneration of the endothelium. Overall, this study shows that polymer coating of decellularized vessels provides a new strategy to improve re-endothelialization of vascular grafts, maintaining or enhancing mechanical properties while reducing the risk of thrombogenesis. These results could have potential applications in improving tissue-engineered vascular grafts for cardiovascular therapies with small caliber vessels

    S100B as a potential biomarker and therapeutic target in multiple sclerosis

    Get PDF
    Multiple sclerosis (MS) pathology is characterized by neuroinflammation and demyelination. Recently, the inflammatory molecule S100B was identified in cerebrospinal fluid (CSF) and serum of MS patients. Although seen as an astrogliosis marker, lower/physiological levels of S100B are involved in oligodendrocyte differentiation/maturation. Nevertheless, increased S100B levels released upon injury may induce glial reactivity and oligodendrocyte demise, exacerbating tissue damage during an MS episode or delaying the following remyelination. Here, we aimed to unravel the functional role of S100B in the pathogenesis of MS. Elevated S100B levels were detected in the CSF of relapsing-remitting MS patients at diagnosis. Active demyelinating MS lesions showed increased expression of S100B and its receptor, the receptor for advanced glycation end products (RAGE), in the lesion area, while chronic active lesions displayed increased S100B in demyelinated areas with lower expression of RAGE in the rim. Interestingly, reactive astrocytes were identified as the predominant cellular source of S100B, whereas RAGE was expressed by activated microglia/macrophages. Using an ex vivo demyelinating model, cerebral organotypic slice cultures treated with lysophosphatidylcholine (LPC), we observed a marked elevation of S100B upon demyelination, which co-localized mostly with astrocytes. Inhibition of S100B action using a directed antibody reduced LPC-induced demyelination, prevented astrocyte reactivity and abrogated the expression of inflammatory and inflammasome-related molecules. Overall, high S100B expression in MS patient samples suggests its usefulness as a diagnostic biomarker for MS, while the beneficial outcome of its inhibition in our demyelinating model indicates S100B as an emerging therapeutic target in MS.This work was supported by Medal of Honor L’Oréal for Women in Science (FCT, UNESCO, L’Óreal) and innovation grant (Ordem dos Farmacêuticos) to AF, a post-doctoral grant from Fundação para a Ciência e Tecnologia (FCT-SFRH/BPD/96794/2013) and a DuPré Grant from the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) to AB, and by FCT-Pest- OE/SAU/UI4013 to iMed.ULisboa.info:eu-repo/semantics/publishedVersio

    Prognostic impact of epidermal growth factor receptor (EGFR) expression on loco-regional recurrence after preoperative radiotherapy in rectal cancer

    Get PDF
    BACKGROUND: Epidermal growth factor receptor (EGFR) represents a major target for current radiosensitizing strategies. We wished to ascertain whether a correlation exists between the expression of EGFR and treatment outcome in a group of patients with rectal adenocarcinoma who had undergone preoperative radiotherapy (RT). METHODS: Within a six-year period, 138 patients underwent preoperative radiotherapy and curative surgery for rectal cancer (UICC stages II-III) at our institute. Among them, 77 pretherapeutic tumor biopsies were available for semi-quantitative immunohistochemical investigation evaluating the intensity and the number (extent) of tumor stained cells. Statistical analyses included Cox regression for calculating risk ratios of survival endpoints and logistic regression for determining odds ratios for the development of loco-regional recurrences. RESULTS: Median age was 64 years (range: 30–88). Initial staging showed 75% and 25% stage II and III tumors, respectively. RT consisted of 44-Gy pelvic irradiation in 2-Gy fractions using 18-MV photons. In 25 very low-rectal-cancer patients the primary tumor received a boost dose of up to 16 Gy for a sphincter-preservation approach. Concomitant chemotherapy was used in 17% of the cases. All patients underwent complete total mesorectal resection. Positive staining (EGFR+) was observed in 43 patients (56%). Median follow-up was 36 months (range: 6–86). Locoregional recurrence rates were 7 and 20% for EGFR extent inferior and superior to 25%, respectively. The corresponding locoregional recurrence-free survival rate at two years was 94% (95% confidence interval, CI, 92–98%) and 84% (CI 95%, 58–95%), respectively (P = 0.06). Multivariate analyses showed a significant correlation between the rate of loco-regional recurrence and three parameters: EGFR extent superior to 25% (hazard ratio = 7.18, CI 95%, 1.17–46, P = 0.037), rectal resection with microscopic residue (hazard ratio = 6.92, CI 95%, 1.18–40.41, P = 0.032), and a total dose of 44 Gy (hazard ratio = 5.78, CI 95%, 1.04–32.05, P = 0.045). CONCLUSION: EGFR expression impacts on loco-regional recurrence. Knowledge of expression of EGFR in rectal cancer could contribute to the identification of patients with an increased risk of recurrences, and to the prediction of prognosis

    Doxorubicin-induced chronic dilated cardiomyopathy—the apoptosis hypothesis revisited

    Get PDF
    The chemotherapeutic agent doxorubicin (DOX) has significantly increased survival rates of pediatric and adult cancer patients. However, 10% of pediatric cancer survivors will 10–20 years later develop severe dilated cardiomyopathy (DCM), whereby the exact molecular mechanisms of disease progression after this long latency time remain puzzling. We here revisit the hypothesis that elevated apoptosis signaling or its increased likelihood after DOX exposure can lead to an impairment of cardiac function and cause a cardiac dilation. Based on recent literature evidence, we first argue why a dilated phenotype can occur when little apoptosis is detected. We then review findings suggesting that mature cardiomyocytes are protected against DOX-induced apoptosis downstream, but not upstream of mitochondrial outer membrane permeabilisation (MOMP). This lack of MOMP induction is proposed to alter the metabolic phenotype, induce hypertrophic remodeling, and lead to functional cardiac impairment even in the absence of cardiomyocyte apoptosis. We discuss findings that DOX exposure can lead to increased sensitivity to further cardiomyocyte apoptosis, which may cause a gradual loss in cardiomyocytes over time and a compensatory hypertrophic remodeling after treatment, potentially explaining the long lag time in disease onset. We finally note similarities between DOX-exposed cardiomyocytes and apoptosis-primed cancer cells and propose computational system biology as a tool to predict patient individual DOX doses. In conclusion, combining recent findings in rodent hearts and cardiomyocytes exposed to DOX with insights from apoptosis signal transduction allowed us to obtain a molecularly deeper insight in this delayed and still enigmatic pathology of DC
    corecore