115 research outputs found
Recommended from our members
Simulation of Gas Production from Multilayered Hydrate-Bearing Media with Fully Coupled Flow, Thermal, Chemical and Geomechanical Processes Using TOUGH + Millstone. Part 1: Numerical Modeling of Hydrates
TOUGH + Millstone has been developed for the analysis of coupled flow, thermal and geomechanical processes associated with the formation and/or dissociation of CH4-hydrates in geological media. It is composed of two constituent codes: (a) a significantly enhanced version of the TOUGH + HYDRATE simulator, V2.0, that accounts for all known flow, physical, thermodynamic and chemical processes associated with the behavior of hydrate-bearing systems undergoing changes and includes the most recent advances in the description of the system properties, coupled seamlessly with (b) Millstone V1.0, a new code that addresses the conceptual, computational and mathematical shortcomings of earlier codes used to describe the geomechanical response of these systems. The capabilities of TOUGH + Millstone are demonstrated in the simulation and analysis of the system flow, thermal and geomechanical behavior during gas production from a realistic complex offshore hydrate deposit. In the first paper of this series, we discuss the physics underlying the T + H hydrate simulator, the constitutive relationships describing the physical, chemical (equilibrium and kinetic) and thermal processes, the states of the CH + H O system and the sources of critically important data, as well as the mathematical approaches used for the development of the of mass and energy balance equations and their solution. Additionally, we provide verification examples of the hydrate code against numerical results from the simulation of laboratory and field experiments. 4
Recommended from our members
Simulation of Gas Production from Multilayered Hydrate-Bearing Media with Fully Coupled Flow, Thermal, Chemical and Geomechanical Processes Using TOUGH+Millstone. Part 3: Production Simulation Results
The TOUGH+Millstone simulator has been developed for the analysis of coupled flow, thermal and geomechanical processes associated with the formation and/or dissociation of CH -hydrates in geological media. It is composed of two constituent codes: (a) a significantly enhanced version of the TOUGH+Hydrate simulator, v2.0, that accounts for all known flow, physical, thermodynamic and chemical processes associated with the evolution of hydrate-bearing systems and includes the most recent physical properties relationships, coupled seamlessly with (b) Millstone v1.0, a new code that addresses the conceptual, computational and mathematical shortcomings of earlier codes used to describe the geomechanical response of these systems. The capabilities of the TOUGH+Millstone code are demonstrated in the simulation and analysis of the system flow, thermal, and geomechanical behavior during gas production from a realistic complex offshore hydrate deposit. In the third paper of this series, we apply the simulators described in parts 1 and 2 to a problem of gas production from a complex, multilayered system of hydrate-bearing sediments in an oceanic environment. We perform flow simulations of constant-pressure production via a vertical well and compare those results to a coupled flow-geomechanical simulation of the same process. The results demonstrate the importance of fully coupled geomechanics when modeling the evolution of reservoir properties during production.
Recommended from our members
System response to gas production from a heterogeneous hydrate accumulation at the UBGH2-6 site of the Ulleung basin in the Korean East Sea
We investigate the feasibility of production from a layered marine gas hydrate reservoir using the properties and conditions corresponding to the UBGH2-6 site of the Ulleung Basin in the Korean East Sea. The work expands and furthers previous investigations in support of a proposed field test. The target system is location in deep water and consists of 13 m of alternating hydrate-bearing sand and soft mud layers and will be produced using a vertical well. We assess production potential during a 14-day field test, examine sensitivity to heterogeneity in permeability, porosity, and initial hydrate saturation, and assess the geomechanical response of the system to short-term production. Producing gas from the system appears to be technically feasible, however, low production rates and relatively large water production rates are expected during the field test. Expected subsidence and reservoir compaction is limited given the current data and the short timeframes of the production test
Evaluation of alternative horizontal well designs for gas production from hydrate deposits in the Shenhu area, South China Sea
Gas hydrate deposits were confirmed in the Shenhu Area, the north slope of South China Sea during a drilling expedition in 2007. Hydrate deposits in the area are distributed in disseminated forms in forams-rich clay sediments with permeable overburden and underburden layers. Production of gas from such a type of hydrate deposits is very challenging. In this study, we develop a numerical approach for investigation of gas production strategies by horizontal wells and preliminary estimation of the production potential based on the limited data that are currently available. Numerical models are built to represent the typical hydrate deposits in the area, including the thickness of the Hydrate-Bearing Layer (HBL), hydrate saturation, water depth, temperature at the sea floor, initial thermal gradient and pressure distribution. The models are used to simulate the different production schemes and well designs. In this paper, production strategies of horizontal well system with combination of depressurization and thermal stimulation are investigated through numerical models. Gas production potential from the deposits and effectiveness of the different production methods are evaluated. The simulation results indicate that with current technology, gas production from Shenhu hydrate deposits may not be economically efficient for all the production strategies we have investigated. Copyright 2010, Society of Petroleum Engineers
Dietary Vitamin D3 Supplements Reduce Demyelination in the Cuprizone Model
Vitamin D is emerging as a probably important environmental risk factor in multiple sclerosis, affecting both susceptibility and disease progression. It is not known to what extent this effect is due to a modulation of peripheral lymphocyte function, or to intrathecal effects of vitamin D. We investigated the effect of dietary vitamin D3 content on de/remyelination in the cuprizone model, which is a well established toxic model of demyelination, with no associated lymphocyte infiltration. The mice received diets either deficient of (<50 IU/kg), or supplemented with low (500 IU/kg), high (6200 IU/kg) or very high (12500 IU/kg) amounts of vit D3. Cuprizone (0.2%) was added to the diet for six weeks, starting two weeks after onset of the experimental diets. Mouse brain tissue was histopathologically evaluated for myelin and oligodendrocyte loss, microglia/macrophage activation, and lymphocyte infiltration after six weeks of cuprizone exposure, and two weeks after discontinuation of cuprizone exposure. High and very high doses of vitamin D3 significantly reduced the extent of white matter demyelination (p = 0.004) and attenuated microglia activation (p = 0.001). No differences in the density of oligodendrocytes were observed between the diet groups. Two weeks after discontinuation of cuprizone exposure, remyelination was only detectable in the white matter of mice receiving diets deficient of or with low vitamin D3 content. In conclusion, high dietary doses of vitamin D3 reduce the extent of demyelination, and attenuate microglia activation and macrophage infiltration in a toxic model of demyelination, independent of lymphocyte infiltration
The Obesity and Fatty Liver Are Reduced by Plant-Derived Pediococcus pentosaceus LP28 in High Fat Diet-Induced Obese Mice
We evaluated the effect of an oral administration of a plant-derived lactic acid bacterium, Pediococcus pentosaceus LP28 (LP28), on metabolic syndrome by using high fat diet-induced obese mice. The obese mice were divided into 2 groups and fed either a high fat or regular diet for 8 weeks. Each group was further divided into 3 groups, which took LP28, another plant-derived Lactobacillus plantarum SN13T (SN13T) or no lactic acid bacteria (LAB). The lean control mice were fed a regular diet without inducing obesity prior to the experiment. LP28 reduced body weight gain and liver lipid contents (triglyceride and cholesterol), in mice fed a high fat diet for 8 weeks (40%, 54%, and 70% less than those of the control group without LAB, and P = 0.018, P<0.001, and P = 0.021, respectively), whereas SN13T and the heat treated LP28 at 121°C for 15 min were ineffective. Abdominal visceral fat in the high fat diet mice fed with LP28 was also lower than that without LAB by 44%, although it was not significant but borderline (P = 0.076). The sizes of the adipocytes and the lipid droplets in the livers were obviously decreased. A real-time PCR analyses showed that lipid metabolism-related genes, such as CD36 (P = 0.013), SCD1 encoding stearoyl-CoA desaturase 1 (not significant but borderline, P = 0.066), and PPARγ encoding peroxisome proliferator-activated receptor gamma (P = 0.039), were down-regulated by taking LP28 continuously, when compared with those of the control group. In conclusion, LP28 may be a useful LAB strain for the prevention and reduction of the metabolic syndrome
Regulation of Kainate Receptor Subunit mRNA by Stress and Corticosteroids in the Rat Hippocampus
Kainate receptors are a class of ionotropic glutamate receptors that have a role in the modulation of glutamate release and synaptic plasticity in the hippocampal formation. Previous studies have implicated corticosteroids in the regulation of these receptors and recent clinical work has shown that polymorphisms in kainate receptor subunit genes are associated with susceptibility to major depression and response to anti-depressant treatment. In the present study we sought to examine the effects of chronic stress and corticosteroid treatments upon the expression of the mRNA of kainate receptor subunits GluR5-7 and KA1-2. Our results show that, after 7 days, adrenalectomy results in increased expression of hippocampal KA1, GluR6 and GluR7 mRNAs, an effect which is reversed by treatment with corticosterone in the case of KA1 and GluR7 and by aldosterone treatment in the case of GluR6. 21 days of chronic restraint stress (CRS) elevated the expression of the KA1 subunit, but had no effect on the expression of the other subunits. Similarly, 21 days of treatment with a moderate dose of corticosterone also increased KA1 mRNA in the dentate gyrus, whereas a high corticosterone dose has no effect. Our results suggest an interaction between hippocampal kainate receptor composition and the hypothalamic-pituitary-adrenal (HPA) axis and show a selective chronic stress induced modulation of the KA1 subunit in the dentate gyrus and CA3 that has implications for stress-induced adaptive structural plasticity
Multiple interactions between the alpha2C- and beta1-adrenergic receptors influence heart failure survival
<p>Abstract</p> <p>Background</p> <p>Persistent stimulation of cardiac β<sub>1</sub>-adrenergic receptors by endogenous norepinephrine promotes heart failure progression. Polymorphisms of this gene are known to alter receptor function or expression, as are polymorphisms of the α<sub>2C</sub>-adrenergic receptor, which regulates norepinephrine release from cardiac presynaptic nerves. The purpose of this study was to investigate possible synergistic effects of polymorphisms of these two intronless genes (<it>ADRB1 </it>and <it>ADRA2C</it>, respectively) on the risk of death/transplant in heart failure patients.</p> <p>Methods</p> <p>Sixteen sequence variations in <it>ADRA2C </it>and 17 sequence variations in <it>ADRB1 </it>were genotyped in a longitudinal study of 655 white heart failure patients. Eleven sequence variations in each gene were polymorphic in the heart failure cohort. Cox proportional hazards modeling was used to identify polymorphisms and potential intra- or intergenic interactions that influenced risk of death or cardiac transplant. A leave-one-out cross-validation method was utilized for internal validation.</p> <p>Results</p> <p>Three polymorphisms in <it>ADRA2C </it>and five polymorphisms in <it>ADRB1 </it>were involved in eight cross-validated epistatic interactions identifying several two-locus genotype classes with significant relative risks ranging from 3.02 to 9.23. There was no evidence of intragenic epistasis. Combining high risk genotype classes across epistatic pairs to take into account linkage disequilibrium, the relative risk of death or transplant was 3.35 (1.82, 6.18) relative to all other genotype classes.</p> <p>Conclusion</p> <p>Multiple polymorphisms act synergistically between the <it>ADRA2C </it>and <it>ADRB1 </it>genes to increase risk of death or cardiac transplant in heart failure patients.</p
- …