2,899 research outputs found
Slightly generalized Generalized Contagion: Unifying simple models of biological and social spreading
We motivate and explore the basic features of generalized contagion, a model
mechanism that unifies fundamental models of biological and social contagion.
Generalized contagion builds on the elementary observation that spreading and
contagion of all kinds involve some form of system memory. We discuss the three
main classes of systems that generalized contagion affords, resembling: simple
biological contagion; critical mass contagion of social phenomena; and an
intermediate, and explosive, vanishing critical mass contagion. We also present
a simple explanation of the global spreading condition in the context of a
small seed of infected individuals.Comment: 8 pages, 5 figures; chapter to appear in "Spreading Dynamics in
Social Systems"; Eds. Sune Lehmann and Yong-Yeol Ahn, Springer Natur
Recommended from our members
A preliminary synthesis of major scientific results during the SALSA program
The objective of this paper is to provide an overview of the primary results of the Semi-Arid Land-Surface-Atmosphere (SALSA) Program in the context of improvements to our overall understanding of hydrologic, ecologic, and atmospheric processes and their interactions in a semi-arid basin. The major findings and future research needs associated with the different core components of the program are emphasized. First, remote-sensing investigations are discussed, especially those directed toward taking full advantage of the capabilities of the new generation of satellites (ERS2/ATSR2, VEGETATION, LANDSAT7, NASA-EOS). Second, we discuss parameterization of the water and energy fluxes in arid and semi-arid regions, with special emphasis on methods to aggregate these fluxes from patch scale to grid scale. Third, we address the issues related to grassland ecology and competition for water between native grass and invasive mesquite species. Fourth, findings related to the interactions between surface water, ground water, and vegetation in a semi-arid riparian system are discussed. Next, an assessment of land use and land cover change over the entire basin over a quarter century is reviewed. Finally, unsolved issues and the needs for further research are outlined
The Routing of Complex Contagion in Kleinberg's Small-World Networks
In Kleinberg's small-world network model, strong ties are modeled as
deterministic edges in the underlying base grid and weak ties are modeled as
random edges connecting remote nodes. The probability of connecting a node
with node through a weak tie is proportional to , where
is the grid distance between and and is the
parameter of the model. Complex contagion refers to the propagation mechanism
in a network where each node is activated only after neighbors of the
node are activated.
In this paper, we propose the concept of routing of complex contagion (or
complex routing), where we can activate one node at one time step with the goal
of activating the targeted node in the end. We consider decentralized routing
scheme where only the weak ties from the activated nodes are revealed. We study
the routing time of complex contagion and compare the result with simple
routing and complex diffusion (the diffusion of complex contagion, where all
nodes that could be activated are activated immediately in the same step with
the goal of activating all nodes in the end).
We show that for decentralized complex routing, the routing time is lower
bounded by a polynomial in (the number of nodes in the network) for all
range of both in expectation and with high probability (in particular,
for and
for in expectation),
while the routing time of simple contagion has polylogarithmic upper bound when
. Our results indicate that complex routing is harder than complex
diffusion and the routing time of complex contagion differs exponentially
compared to simple contagion at sweetspot.Comment: Conference version will appear in COCOON 201
Exponential Random Graph Modeling for Complex Brain Networks
Exponential random graph models (ERGMs), also known as p* models, have been
utilized extensively in the social science literature to study complex networks
and how their global structure depends on underlying structural components.
However, the literature on their use in biological networks (especially brain
networks) has remained sparse. Descriptive models based on a specific feature
of the graph (clustering coefficient, degree distribution, etc.) have dominated
connectivity research in neuroscience. Corresponding generative models have
been developed to reproduce one of these features. However, the complexity
inherent in whole-brain network data necessitates the development and use of
tools that allow the systematic exploration of several features simultaneously
and how they interact to form the global network architecture. ERGMs provide a
statistically principled approach to the assessment of how a set of interacting
local brain network features gives rise to the global structure. We illustrate
the utility of ERGMs for modeling, analyzing, and simulating complex
whole-brain networks with network data from normal subjects. We also provide a
foundation for the selection of important local features through the
implementation and assessment of three selection approaches: a traditional
p-value based backward selection approach, an information criterion approach
(AIC), and a graphical goodness of fit (GOF) approach. The graphical GOF
approach serves as the best method given the scientific interest in being able
to capture and reproduce the structure of fitted brain networks
Complexity without chaos: Plasticity within random recurrent networks generates robust timing and motor control
It is widely accepted that the complex dynamics characteristic of recurrent
neural circuits contributes in a fundamental manner to brain function. Progress
has been slow in understanding and exploiting the computational power of
recurrent dynamics for two main reasons: nonlinear recurrent networks often
exhibit chaotic behavior and most known learning rules do not work in robust
fashion in recurrent networks. Here we address both these problems by
demonstrating how random recurrent networks (RRN) that initially exhibit
chaotic dynamics can be tuned through a supervised learning rule to generate
locally stable neural patterns of activity that are both complex and robust to
noise. The outcome is a novel neural network regime that exhibits both
transiently stable and chaotic trajectories. We further show that the recurrent
learning rule dramatically increases the ability of RRNs to generate complex
spatiotemporal motor patterns, and accounts for recent experimental data
showing a decrease in neural variability in response to stimulus onset
Theories for influencer identification in complex networks
In social and biological systems, the structural heterogeneity of interaction
networks gives rise to the emergence of a small set of influential nodes, or
influencers, in a series of dynamical processes. Although much smaller than the
entire network, these influencers were observed to be able to shape the
collective dynamics of large populations in different contexts. As such, the
successful identification of influencers should have profound implications in
various real-world spreading dynamics such as viral marketing, epidemic
outbreaks and cascading failure. In this chapter, we first summarize the
centrality-based approach in finding single influencers in complex networks,
and then discuss the more complicated problem of locating multiple influencers
from a collective point of view. Progress rooted in collective influence
theory, belief-propagation and computer science will be presented. Finally, we
present some applications of influencer identification in diverse real-world
systems, including online social platforms, scientific publication, brain
networks and socioeconomic systems.Comment: 24 pages, 6 figure
Suicide ideation of individuals in online social networks
Suicide explains the largest number of death tolls among Japanese adolescents
in their twenties and thirties. Suicide is also a major cause of death for
adolescents in many other countries. Although social isolation has been
implicated to influence the tendency to suicidal behavior, the impact of social
isolation on suicide in the context of explicit social networks of individuals
is scarcely explored. To address this question, we examined a large data set
obtained from a social networking service dominant in Japan. The social network
is composed of a set of friendship ties between pairs of users created by
mutual endorsement. We carried out the logistic regression to identify users'
characteristics, both related and unrelated to social networks, which
contribute to suicide ideation. We defined suicide ideation of a user as the
membership to at least one active user-defined community related to suicide. We
found that the number of communities to which a user belongs to, the
intransitivity (i.e., paucity of triangles including the user), and the
fraction of suicidal neighbors in the social network, contributed the most to
suicide ideation in this order. Other characteristics including the age and
gender contributed little to suicide ideation. We also found qualitatively the
same results for depressive symptoms.Comment: 4 figures, 9 table
RNA secondary structure prediction from multi-aligned sequences
It has been well accepted that the RNA secondary structures of most
functional non-coding RNAs (ncRNAs) are closely related to their functions and
are conserved during evolution. Hence, prediction of conserved secondary
structures from evolutionarily related sequences is one important task in RNA
bioinformatics; the methods are useful not only to further functional analyses
of ncRNAs but also to improve the accuracy of secondary structure predictions
and to find novel functional RNAs from the genome. In this review, I focus on
common secondary structure prediction from a given aligned RNA sequence, in
which one secondary structure whose length is equal to that of the input
alignment is predicted. I systematically review and classify existing tools and
algorithms for the problem, by utilizing the information employed in the tools
and by adopting a unified viewpoint based on maximum expected gain (MEG)
estimators. I believe that this classification will allow a deeper
understanding of each tool and provide users with useful information for
selecting tools for common secondary structure predictions.Comment: A preprint of an invited review manuscript that will be published in
a chapter of the book `Methods in Molecular Biology'. Note that this version
of the manuscript may differ from the published versio
The Saudi experiment with career guidance
Saudi Arabia has recently embarked on an ambitious experiment with career guidance. The country has identified that career guidance offers a range of potential cultural, educational and economic benefits. These include supporting the Saudisation of the workforce, the development of the vocational education system and the engagement of the Saudi ‘youth bulge’ in the labour market and wider society. However, the country has a weak tradition of career guidance and a need to develop new policies and systems rapidly. The Saudi Ministry of Labour has driven the development of the country’s new career guidance system and has sought to learn from global best practice. However, Saudi Arabia offers a very different context from those where career guidance has flourished. Particularly distinctive features of Saudi society include its limited civil society, the central role that religion plays, the place of women, the role of oil within the economy and the high level of migrant workers in the labour market. Taken together these issues offer challenges of culture, theory, policy and practice. Negotiating these challenges and building an organic body of theory and practice will be critical to the success or otherwise of the Saudi experiment with career guidance.N/
Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions
During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4Eme1. Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastroph
- …
