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Chapter 12
Analysis of a Network’s Emerging
Behaviour via Its Structure Involving
Its Strongly Connected Components

Abstract In this chapter, it is addressed how network structure can be related to
network behaviour. If such a relation is studied, that usually concerns only strongly
connected networks and only linear functions describing the aggregation of mul-
tiple impacts. In this chapter both conditions are generalised. General theorems are
presented that relate emerging behaviour of a network to the network’s structure
characteristics. The network structure characteristics on the one hand concern
network connectivity in terms of the network’s strongly connected components and
their mutual connections; this generalises the condition of being strongly connected
(as addressed in Chap. 11) to a very general condition. On the other hand, the
network structure characteristics considered concern aggregation by generalising
from linear combination functions to any combination functions that are nor-
malised, monotonic and scalar-free, so that many nonlinear functions are also
covered (which also was done in Chap. 11). Thus the contributed theorems gen-
eralise existing theorems on the relation between network structure and network
behaviour that only address specific cases (such as acyclic networks, fully and
strongly connected networks, and theorems addressing only linear functions).

12.1 Introduction

In many cases, the relation between network structure and its emerging behaviour is
only studied by performing simulation experiments. In this chapter, it is shown how
within a certain context it is also possible to analyse mathematically how certain
behaviours relate to certain properties of the network structure. For the network’s
structure, two types of characteristics are considered: (1) characteristics of the
network’s connectivity, and (2) characteristics of the aggregation in the network. In
Chap. 11, the above question was only addressed for quite specific connectivity
characteristics, in particular, for the case of an acyclic network, and the case of a
strongly connected network. For these connectivity characteristics, the current
chapter uses the general setting based on the strongly connected components of the
network to develop a mathematical analysis for the general case. Tools were
adopted from the area of Graph Theory, in particular, the manner to identify the
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connectivity structure within a graph by decomposition of the graph according to its
(maximal) strongly connected components and the resulting (acyclic) condensation
graph (Harary et al. 1965), Chap. 3, and in addition the notion of stratification of an
acyclic directed graph; e.g., Chen (2009).

Besides the connectivity characteristics of the network structure, the theorems
presented here also take into account the aggregation characteristics of the network
structure, by identifying relevant properties of the combination functions by which
the impacts from multiple incoming connections are aggregated. It applies not to
just one most simple type of (for example, linear) functions, but to a wider class of
functions: those combination functions that are characterised as being monotonic,
scalar-free and normalised. These properties of combination functions already
turned out important in Chap. 11 for acyclic and strongly connected networks, and
will also turn out to be important for the general case concerning the connectivity
characteristics. This class of functions includes not only the often used linear
functions, but also nonlinear functions such as nth order Euclidean combination
functions and normalised scaled geometric mean functions.

The theorems explain which are the relevant characteristics that make that these
combination functions contribute to certain behaviour when t ! ∞. It will be
shown how using the above mentioned tools from Graph Theory, together with the
aggregation characteristics of combination functions mentioned, enable to address
the general case and obtain theorems about it. These theorems apply to arbitrary
types of networks, but among the foci of application, in particular, are the types of
example network models of which several are described in Treur (2016b):

(1) Mental Networks describing the dynamics of mental processes as the (usually
cyclic) interaction of the mental states involved, and behaviour resulting from
this,

(2) Social Networks describing social contagion processes for opinions, beliefs,
emotions, for example,

(3) Integrative Networks that integrate (1) and (2).

Note that especially Mental Networks are often not strongly connected, although
some parts may be. Typically they use sensory input that in general may not be
affected by the behaviour, and because of that such input is not on any cycle of the
network. Therefore they cannot be treated like strongly connected networks, but the
theory developed here based on a decomposition by strongly connected compo-
nents does apply (for applying the analysis to an example of such a Mental
Network, see Sect. 12.7.2 below). Social Networks may often be strongly con-
nected, but also in that case external nodes may be involved that affect them, which
makes the whole network not strongly connected. Therefore for applicability on
such types of networks the generalisation from strongly connected networks to
general types of networks is important.

The foci of applicability on the three types of networks (1)–(3) mentioned above
also makes that only addressing linear functions would be too limited. Especially
for Mental Networks, often nonlinear functions are used. Therefore the challenge is
also to stretch the type of analysis to at least certain types of nonlinear functions.
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To apply the theorems introduced in this chapter to any given network, first the
decomposition of the network into its strongly connected components is determined.
Multiple efficient algorithms are available to determine these strongly connected
components; e.g., see Bloem et al. (2006), Fleischer et al. (2000), Gentilini et al.
(2003), Li et al. (2014), Tarjan (1972), Wijs et al. (2016), Lacki (2013). The con-
nections between these components are identified, as represented in an acyclic con-
densation graph, and stratification of this graph is introduced. Based on this acyclic
and stratified structure added to the original network, the theorems will show whether
and which states within the network will end up in a common equilibrium value, and
more in general determine bounds for the equilibrium values of the states.

The research presented here has been initiated from the angle of mathematical
analysis and verification of network models in comparison to simulations for these
models. For more background on this angle, see, for example, Treur (2016a) or
Treur (2016b), Chap. 12. Like verification in Software Engineering is very useful
for the quality of developed software e.g., Drechsler (2004), Fisher (2007), veri-
fication in network modeling is a useful means to get implementations of network
models in accordance with the specifications of the models, and eliminate imple-
mentation errors. If a simulation of an implemented network model contradicts one
or more of the results presented in the current chapter for the specification of the
network model, then this pinpoints that something is wrong: a discrepancy between
specification and implementation of the network model that needs to be addressed.
Afterwards, it turned out that the contributions presented here also have some
relations to research conducted from a different angle, namely on control of net-
works; e.g., Liu et al. (2011, 2012), Moschoyiannis et al. (2016), Haghighi and
Namazi (2015), Karlsen and Moschoyiannis (2018). These relations will be dis-
cussed in the Discussion section.

In Sect. 12.2 the basic definition of network used is summarised. Section 12.3
discusses emerging behaviour, illustrated for an example network. Section 12.4
presents the definitions of the Graph Theory tools for the considered network
connectivity characteristics; in Sect. 12.5 the identified aggregation characteristics
in terms of combination functions are defined. In Sect. 12.6 the main theorems are
formulated and it is pointed out how they were proven, thereby referring to
Chap. 15, Sect. 15.7 for more complete proofs. In Sect. 12.7 more in-depth analysis
is added, and in particular, applicability is illustrated for a type of network which is
not a Social Network: a Mental Network describing sharing behaviour based on
emotional charge. Section 12.8 is a final discussion.

12.2 Temporal-Causal Networks

This section describes the definition of the concept of network model used:
temporal-causal network model. This is a notion of network that covers all types of
discrete and smooth continuous dynamical systems, as has been shown in Treur (2017),
building further, among others, on Ashby (1960) and Port and van Gelder (1995).
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A temporal-causal network model is based on three notions defining the network
structure characteristics: connection weight (Connectivity), combination function
(Aggregation), and speed factor (Timing); see Table 12.1, upper part. Here the
word temporal in temporal-causal refers to the causality. A library with a number
(currently 35) of standard combination functions is available as options to choose
from; but also own-defined functions can be used.

In Table 12.1, lower part it is shown how a conceptual representation of network
structure defines a numerical representation of network dynamics; see also (Treur
2016b), Chap. 2, or (Treur 2019). Here X1, … , Xk with k � 1 are the states from
which state Y gets its incoming connections. This defines the detailed dynamic
semantics of a temporal-causal network. Note that in the current chapter all con-
nection weights are assumed nonnegative.

The difference equations in the last row in Table 12.1 can be used for simulation
and mathematical analysis. They can also be written in differential equation format:

dYðtÞ=dt ¼ gY ½cYðxX1;YX1ðtÞ; . . .;xXk ;YXkðtÞÞ � YðtÞ� ð12:1Þ

Table 12.1 Conceptual and numerical representations of a temporal-causal network

Concepts Notation Explanation

States and
connections

X, Y, X ! Y Describes the nodes and links of a
network
structure (e.g., in graphical or matrix
format)

Connection
weight

xX,Y Connection weight xX,Y 2 [−1, 1]
represents
the strength of the impact of state
X on
state Y through connection X ! Y

Aggregating
multiple
impacts

cY(..) For each state Y a combination
function cY(..)
is chosen to combine the causal
impacts
of other states on state Y

Concepts Numerical representation Explanation

State values
over time t

Y(t) At each time point t each state Y has
a real number value, usually in [0, 1]

Single causal
impact

impactX,Y(t) = xX,Y X(t) At t state X with connection to state
Y has an impact on Y, using weight
xX,Y

Aggregating
multiple
impacts

aggimpactY(t) = cY( impactX1 ;Y (t),
… , impactXk ;Y (t)) = cY( xX1 ;YX1(t),
… , xXk ;YXk(t))

The aggregated impact of k � 1
states X1, … , Xk on Y at t, is
determined using combination
function cY(..)

Timing of
the causal
effect

Y(t + Dt) = Y(t) + ηY
[aggimpactY(t) − Y(t)]
Dt = Y(t) + ηY [cY( xX1 ;YX1ðtÞ, … ,
xXk ;YXkðtÞ) − Y(t)] Dt

The impact on Y is exerted over time
gradually, using speed factor ηY
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Note that combination functions usually are functions on the 0–1 interval within
the real numbers: [0, 1]k ! [0, 1]. Moreover, note that the condition k � 1 in
Table 12.1 makes that by definition the above general format only applies to states
Y with at least one incoming connection. However, in a network there also may be
states Y without any incoming connection; for example, such states can serve as
external input. Their dynamics can be specified in an independent manner by any
mathematical function f: [0, ∞) ! [0, 1] over time t:

YðtÞ ¼ f ðtÞ for all t ð12:2Þ

Special cases of this are states Y with constant values over time, where for some
constant c 2 [0, 1] it holds f(t) = c for all t. For such constant states, still the general
format can be used as well, as long as the speed factor ηY is set at 0 and the
combination function is well-defined for zero arguments: then the general format
reduces to Y(t + Dt) = Y(t), and therefore the initial value is kept over time. But
there are also other possible types of external input, for example, a repeated
alternation of values 0 and 1 for some time intervals to model episodes in which a
stimulus occurs and episodes in which it does not.

Examples of often used combination functions (see also Treur 2016b, Chap. 2,
Table 2.10) are the following:

• The identity function id(.) for states with only one impact

idðVÞ ¼ V

• the scaled sum function ssumk(..) with scaling factor k

ssumkðV1; . . .;VkÞ ¼ V1 þ � � � þVk

k

• the scaled minimum function smink(..) with scaling factor k

sminkðV1; . . .;VkÞ ¼ min V1; . . .;Vkð Þ
k

• the scaled maximum function smax(..) with scaling factor k

smaxkðV1; . . .;VkÞ ¼ max V1; . . .;Vkð Þ
k

• the simple logistic sum combination function slogisticr,s(..) with steepness r and
threshold s, defined by

slogisticr;sðV1; . . .;VkÞ ¼ 1
1þ e�r V1 þ ��� þVk�sð Þ
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• the advanced logistic sum combination function alogisticr,s(..) with steepness r
and threshold s, defined by

alogisticr;sðV1; . . .;VkÞ ¼ 1
1þ e�r V1 þ ��� þVk�sð Þ �

1
1þ ersÞ

� �
ð1þ e�rsÞ

• the Euclidean combination function of nth order with scaling factor k (gener-
alising the scaled sum ssumk(..) for n = 1) defined by

eucln;lðV1; . . .;VkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vn
1 þ � � � þVn

k

k
n

r

Here n can be any positive integer, or even any positive real number.
• the scaled geometric mean combination function with scaling factor k

sgeomeankðV1; . . .;VkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1 � . . . � Vk

k
k

r

For example, scaled minimum and maximum functions are often used in fuzzy
logic inspired modelling and modeling uncertainty in AI, and the logistic
sum functions are often used in neural network inspired modeling. The scaled sum
functions, which are a special (linear) case of Euclidean functions, are often used in
modeling of social networks. Geometric mean combination functions relate to
product-based combination rules often used for probability-based approaches.

Recall from Chap. 11 the picture shown in Fig. 12.1. It also applies here. The
basic relation between structure and dynamics is indicated by the horizontal arrow
in the lower part. The upward arrows point at relevant properties of the structure
and of the behaviour of the network. Relevant properties of the network structure
are addressed in Sect. 12.4 (properties of the connectivity structure based on the
network’s strongly connected components) and Sect. 12.5 (properties of the
aggregation structure based on combination functions). For behaviour, in particular,
the equilibria that occur will be discussed. Section 12.3 presents basic definitions
and shows examples of this. In Sect. 12.6, the main results are presented as depicted

Conceptual Representation: 
Network Structure

Numerical Representation: 
Network Dynamics

Properties of the
Network Structure

Properties of Emerging 
Network Behaviour

Fig. 12.1 Bottom layer: the conceptual representation defines the numerical representation. Top
layer: properties of network structure entail properties of emerging network behaviour
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by the upper horizontal arrow in Fig. 12.1. These results mostly have the form that
certain network structure properties entail certain network behaviour properties.

12.3 Emerging Behaviour of a Network

Behaviour for t ! ∞ will be explored by analysing possible equilibria that can
occur.

12.3.1 Basics on Stationary Points and Equilibria
for Temporal-Causal Networks

Stationary points and equilibria are defined as follows.

Definition 1 (stationary point and equilibrium) A state Y has a stationary point
at t if dY(t)/dt = 0.
The network is in equilibrium at t if every state Y of the model has a stationary point
at t.

Given the specific differential equation format for a temporal-causal network
model the following criterion can be found:

Lemma 1 (Criterion for a stationary point in a temporal-causal network) Let
Y be a state and X1, … , Xk the states from which state Y gets its incoming con-
nections. Then Y has a stationary point at t if and only if

gY ¼ 0 or cYðxX1;YX1ðtÞ; . . .;xXk ;YXkðtÞÞ ¼ YðtÞ

■

12.3.2 An Example Network

As an illustration the example network shown in Fig. 12.2 is used. The role
matrices including the connection weights, speed factors, combination function
weights, and combination function parameters, and the initial values used are
shown in Box 12.1. The simulation for Dt = 0.5 is shown in Fig. 12.3.

Note that state X1 has no incoming connections; in the simulation, it has initial
value 0.9 and this stays constant at this level due to having speed factor 0. Also, X5

has 0.9 as an initial value. The other states have an initial value 0. Note that in
Sect. 12.6 theorems are presented from which it follows that the initial values of
states X2 to X4 and X8 to X10 are irrelevant for the emerging behavior as they do not
have any effect on the final behaviour; therefore they were initially set at 0 here.
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The speed factor of the states X2 to X10 is 0.5. The combination function used is a
normalised scaled sum function (see Sect. 12.5 for more details on normalisation).

12.3.3 Simulations for the Example Network

In the simulation shown in Fig. 12.3 states X1 to X4 all end up at value 0.9, states X5 to X7
all at value 0.3 and states X8 to X10 at different individual values 0.681, 0.490, and 0.389,
respectively. Overall, there is some clustering, but also some states get their unique value.
It can be observed that these unique values are in between the cluster values. These
observations will be confirmed by the mathematical analysis presented later.

Box 12.1 Role matrices and initial values for the example network shown in
Fig. 12.2 as simulated in Fig. 12.3

mb       
base con-
nectivity

1 2 

X1

X2 X1 X4

X3 X2

X4 X1 X3

X5 X6

X6 X7

X7 X5

X8 X3 X10

X9 X5 X8

X10 X7 X9

mcfw
combination 

function 
weights

1

eucl

X1 1
X2 1
X3 1
X4 1
X5 1
X6 1
X7 1
X8 1
X9 1
X10 1

mcw 
connection   

weights
1 2 

X1

X2 0.8 0.6
X3 1
X4 0.5 0.2
X5 0.7
X6 0.8
X7 0.6
X8 0.8 0.6
X9 0.8 0.8
X10 0.8 0.7

function
mcfp

parameter

1
eucl

1 2
n

X1 1 1
X2 1 1.4
X3 1 1
X4 1 0.7
X5 1 0.7
X6 1 0.8
X7 1 0.6
X8 1 1.4
X9 1 1.6
X10 1 1.5

ms 
speed

factors
1 

X1 0
X2 0.5
X3 0.5
X4 0.5
X5 0.5
X6 0.5
X7 0.5
X8 0.5
X9 0.5
X10 0.5

iv
initial
values 1 

X1 0.9
X2 0
X3 0
X4 0
X5 0.9
X6 0
X7 0
X8 0
X9 0
X10 0

The combination function used for the simulation in Fig. 12.3 is the first order
euclidean function (or scaled sum function), which is linear. It might be believed that
this pattern depends on the combination function being linear. However, this is not
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the case. In Fig. 12.4 three simulations are shown for nonlinear combination func-
tions, namely higher order Euclidean combination functions of order 2, 4 and 8,
respectively. It is shown that the overall pattern is very similar with the same two
groups going for 0.3 and 0.9, and the remaining three states X8 to X10 getting each at
different values but between these two values 0.3 and 0.9. The only difference is that
the latter three values differ for the four considered combination functions, although
they are in the same order. Note that in the graph for the 8th order Euclidean
combination function state X8, in the end, gets a value very close but not equal to 0.9.

The question of how such emerging asymptotic patterns can be explained will be
addressed in the next three sections. It will be analysed how the pattern depends on

X4

X3

X2

X1

X6

X7

X5

X8

X10

X9

Fig. 12.2 Example network

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60

scaled sum = 1st order Euclidean

X1 X2
X3 X4
X5 X6
X7 X8
X9 X10

Fig. 12.3 Example simulation for linear scaled sum combination functions
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0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60

2nd order Euclidean

X1 X2
X3 X4
X5 X6
X7 X8
X9 X10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60

4th order Euclidean

X1 X2
X3 X4
X5 X6
X7 X8
X9 X10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60

8th order Euclidean

X1 X2
X3 X4
X5 X6
X7 X8
X9 X10

Fig. 12.4 Simulations for nonlinear higher order Euclidean combination functions of order 2, 4,
and 8
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the network’s characteristics, in particular on the connectivity characteristics of the
network and the aggregation characteristics modeled by the combination functions.
Each of these two factors will be discussed first Sects. 12.4 and 12.5, respectively,
after which in Sect. 12.6 they will be related to the emerging behaviour patterns.

12.4 Network Connectivity Characteristics Based
on Strongly Connected Components

When broadening the scope of analysis for a wider class of network concerning
connectivity characteristics, analysis based on the notion of strongly connected
component is useful. Although it had to be rediscovered first, this is known from
Graph Theory as turned out afterwards.

12.4.1 A Network’s Strongly Connected Components

Most of the following definitions can be found, for example, in (Harary et al. 1965),
Chap. 3, or in (Kuich 1970), Sect. 6. Note that here only nonnegative connection
weights are considered.

Definition 2 (reachability and strongly connected components)

(a) State Y is reachable from state X if there is a directed path from X to Y with
nonzero connection weights and speed factors.

(b) A network N is strongly connected if every two states are mutually reachable
within N.

(c) A state is called independent if it is not reachable from any other state.
(d) A subnetwork of network N is a network whose states and connections are

states and connections of N.
(e) A strongly connected component C of a network N is a strongly connected

subnetwork of N such that no larger strongly connected subnetwork of
N contains it as a subnetwork.

Strongly connected components C can be determined by choosing any node X of
N and adding all nodes that are on any cycle through X. When a node X is not on
any cycle, then it will form a singleton strongly connected component C by itself;
this applies to all nodes of N with indegree or outdegree zero. Efficient algorithms
have been developed to determine the strongly connected components of a graph;
for example, see Bloem et al. (2006), Fleischer et al. (2000), Gentilini et al. (2003),
Li et al. (2014), Tarjan (1972), Wijs et al. (2016). The strongly connected com-
ponents of the example network from Fig. 12.2 are shown in Fig. 12.5.
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12.4.2 The Stratified Condensation Graph of a Network

Based on the strongly connected components, a form of an abstracted picture of the
network can be made, called the condensation graph; see Fig. 12.6.

Definition 3 (condensation graph) The condensation C(N) of a network N with
respect to its strongly connected components is a graph whose nodes are the
strongly connected components of N and whose connections are determined as
follows: there is a connection from node Ci to node Cj in C(N) if and only if in
N there is at least one connection from a node in the strongly connected component
Ci to a node in the strongly connected component Cj.

A condensation graph C(N) is always an acyclic graph. The following theorem
summarizes this; see also Harary et al. (1965), Chap. 3, Theorems 3.6 and 3.8, or
Kuich (1970), Sect. 6.

Theorem 1 (acyclic condensation graph)

(a) For any network N, its condensation graph C(N) is acyclic and has at least one
state of outdegree zero and at least one state of indegree zero.

(b) The network N is acyclic itself if and only if it is graph-isomorphic to C(N). In
this case, the nodes in C(N) all are singleton sets {X} containing one state
X from N.

(c) The network N is strongly connected itself if and only if C(N) only has one
node; this node is the set of all states of N.

■

C3

C4

C1

C2

X4

X3

X2

X1

X6

X7

X5

X8

X10

X9

Fig. 12.5 The strongly
connected components within
the example network
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The structure of an acyclic graph is much simpler than the structure of a cyclic
graph. For example, for any acyclic directed graph a stratification structure can
be defined; e.g., Chen (2009). Here such construction is applied in particular to the
condensation graph C(N) thus obtaining a stratified condensation graph SC
(N) which will turn out very useful in Sect. 12.6; see Fig. 12.7.

Definition 4 (stratified condensation graph) The stratified condensation graph
for network N, denoted by SC(N), is the condensation graph C(N) together with a
leveled partition S0, … , Sh−1 in strata Si such that S0 [… [ Sh−1 is the set of all
nodes of C(N) and the Si are mutually disjoint, which is defined inductively as
follows. Here, h is the height of C(N), i.e., the length of the longest path in C(N).

(i) The stratum S0 is the set of nodes in C(N) without incoming connections in C(N).
(ii) For each i > 0 the stratum Si is the set of nodes in C(N) for which all incoming

connections in C(N) come only from nodes in S0, … , Si−1.

If node X is in stratum Si, its level is i.

12.5 Network Aggregation Characteristics Based
on Properties of Combination Functions

The following network aggregation characteristics based on properties of combi-
nation functions have been found to relate to emerging behaviour as discussed
in Sect. 12.3. Note that for combination functions it is (silently) assumed that
c(V1, …, Vk) = 0 iff Vi = 0 for all i.

C1

C2

C4

C3

Fig. 12.6 Condensation of
the example network by its
strongly connected
components: the directed
acyclic condensation
graph C(N)

level 0

C2

C4

C3

C1

level 1 level 2Fig. 12.7 Stratified
condensation graph SC(N) for
the example network
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Definition 5 (monotonic, scalar-free, and additive for a combination function)

(a) A function c(..) is called monotonically increasing if for all values Ui, Vi it
holds

Ui �Vi for all i ) c U1; . . .;Ukð Þ� c V1; . . .;Vkð Þ

(b) A function c(..) is called strictly monotonically increasing if

Ui �Vi for all i; andUj\Vj for at least one
j ) c U1; . . .;Ukð Þ\c V1; . . .;Vkð Þ

(c) A function c(..) is called scalar-free if for all a > 0 and all V1, … , Vk it holds

cðaV1; . . .; aVkÞ ¼ a c V1; . . .;Vkð Þ

(d) A function c(..) is called additive if for all U1, … , Uk and V1, … , Vk it holds

c U1 þV1; . . .;Uk þVkð Þ ¼ c U1; . . .;Ukð Þþ c V1; . . .;Vkð Þ

(e) A function c(..) is called linear if it is both scalar-free and additive.

Note that these characteristics vary over the different examples of combination
functions. Table 12.2 shows which of these characteristics apply to which combi-
nation functions. In general, the theorems that follow in Sect. 12.6 have the char-
acteristics (a), (b) and (c) as conditions, so as can be seen in Table 12.2 they apply
to id(.), ssumk(..), eucln,k(..), and sgeomeank(..) (of which only the first two are
linear and the last two are nonlinear, assuming n 6¼ 1 for the third one and nonzero
values for the fourth one). The theorems do not apply to smink(..) and smaxk(..)
(not strictly monotonous), and to slogisticr,s(..), and alogisticr,s(..) (not scalar-free).
Note that different functions satisfying (a), (b) and (c) can also be combined to get
more complex functions by using linear combinations with positive coefficients and
function composition.

Table 12.2 Characteristics
of Definition 5 for the
example combination
functions

(a) (b) (c) (d) (e)

id(.) + + + + +

ssumk(..) (= eucln,k(..) for
n = 1)

+ + + + +

eucln,k(..) for n 6¼1 + + + − −

sgeomeank(..) for nonzero
values

+ + + − −

smink(..) + − + − −

smaxk(..) + − + − −

slogisticr,s(..) + + − − −

alogisticr,s(..) + + − − −
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Definition 6 (normalised) A network is normalised if for each state Y it holds
cY(xX1;Y , … , xXk ;Y ) = 1, where X1, … , Xk are the states from which Y gets its

incoming connections.

As an example, for a Euclidean combination function of nth order the scaling
parameter choice kY = xX1;Yn + ��� + xXk ;Ynwill provide a normalised network. This
can be done in general as follows:

(1) normalising a combination function
If any combination function cY(..) is replaced by c′Y(..) defined as

c0YðV1; . . .;VkÞ ¼ cYðV1; . . .;VkÞ=cYðxX1;Y ; . . .;xXk ;Y Þ

(note cY( xX1;Y , … , xXk ;Y ) > 0 since xXi;Y> 0), then the network becomes
normalised.

(2) normalising the connection weights (for scalar-free combination functions)
For scalar-free combination functions also normalisation is possible by adapt-
ing the connection weights; define x0

Xi;Y = xXi;Y /cY( xX1;Y , … , xXk ;Y ), then
indeed it holds:

cYðx0
X1;Y ; . . .;x

0
Xk ;YÞ ¼ cðxX1;Y=cYðxX1;Y ; . . .;xXk ;YÞ; . . .;xXk ;Y=

cðxX1;Y ; . . .;xXk ;YÞÞ ¼ 1

Normalisation is a necessary condition for applying the theorems developed in
Sect. 12.6. Simulation is still possible when the network is not normalised. But the
effect then usually is that activation is lost in an artificial manner (if the function
values are lower than normalised) so that all values go to 0, or that activation is
amplified in an artificial manner (if the function values are higher than normalised)
so that all values go to 1. That makes less interesting behaviour for practical
applications and also less interesting analysis.

For different example functions, following normalisation step (1) above, their
normalised variants are given by Table 12.3.

Some of the implications of the above-defined characteristics are illustrated in
the following proposition. This will be used in Sect. 12.6; for a proof, see Chap. 15,
Sect. 15.7.

Proposition 1 Suppose the network is normalised.

(a) If the combination functions are scalar-free and X1, … , Xk are the states from
which Y gets its incoming connections, and X1(t) = ��� = Xk(t) = V for some
common value V, then also cY( xX1;YX1(t), … , xXk ;YXk(t)) = V.

(b) If the combination functions are scalar-free and X1, … , Xk are the states with
outgoing connections to Y, and for U1, … , Uk, V1, … , Vk and a � 0 it holds
Vi = aUi, then cY( xX1;YV1, … , xXk ;YVk) = a cY( xX1;YU1, … , xXk ;YUk).
If in this situation in two different simulations, state values Xi(t) and X′i(t) are
generated then X 0

iðtÞ ¼ aXiðtÞ ) X 0
iðtþDtÞ ¼ aXiðtþDtÞ.
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Table 12.3 Normalisation of the different examples of combination functions

Combination
function

Notation Normalising scaling
factor

Normalised combination
function

Identity
function

id(.) xX,Y V/xX,Y

Scaled sum ssumk(V1, …,
Vk)

xX1 ;Y + ��� + xXk ;Y (V1 + ��� +Vk)/(xX1 ;Y

+��� + xXk ;Y )

Scaled
maximum

smaxk(V1, … ,
Vk)

max(xX1 ;Y , … ,
xXk ;Y )

max(V1,… , Vk)/max(xX1 ;Y ,
… , xXk ;Y )

Scaled
minimum

smink(V1, … ,
Vk)

min(xX1 ;Y ,… , xX1 ;Y ) min(V1,… , Vk)/min(xX1 ;Y ,
… , xXk ;Y )

Euclidean eucln,k(V1, … ,
Vk)

xn
X1 ;Y þ � � � þxn

Xk ;Y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vn
1 þ ��� þVn

k
xn

X1 ;Y
þ ��� þxn

Xk ;Y

n

r

Simple logistic slogisticr,s(V1,
… ,Vk)

slogisticr,s( xX1 ;Y , …
, xXk ;Y )

1þe�rx X1 ;Y
þ ��� þXk ;Y

�sxð Þ
1þe�r V1 þ ��� þVk�sð Þ

Advanced
logistic

alogisticr,s(V1,
… ,Vk)

alogisticr,s( xX1 ;Y , …
, xXk ;Y )

1

1þe�r V1 þ ��� þVk�sð Þ� 1
1þers

1

1þe�rx X1 ;Y
þ ��� þXk ;Y

�sxð Þ�
1

1þers

(c) If the combination functions are additive and X1, … , Xk are the states from
which Y gets its incoming connections, then for values U1, … , Uk, V1, … , Vk

it holds

cYðxX1;Y ðU1 þV1Þ; . . .;xXk ;Y ðUk þVkÞÞ ¼ cYðxX1;YU1; . . .;xXk ;YUkÞ
þ cYðxX1;YV1; . . .;xXk ;YVkÞ

If in this situation in three different simulations, state values Xi(t), X′i(t) and
X′i(t) are generated then

X 00
i ðtÞ ¼ XiðtÞþX 0

iðtÞ ) X 00
i ðtþDtÞ ¼ XiðtþDtÞþX 0

iðtþDtÞ

(d) If the combination functions are scalar-free and monotonically increasing, and
X1, … , Xk are the states from which Y gets its incoming connections, and
V1 � X1(t), … , Xk(t) � V2 for some values V1 and V2, then also

V1 � cYðxX1;YX1ðtÞ; . . .;xXk ;YXkðtÞÞ�V2

and if ηY Dt � 1 and V1 � Y(t) � V2 then V1 � Y(t + Dt) � V2.

12.6 Network Behaviour and Network Structure
Characteristics

How the network structure characteristics concerning connectivity and aggregation
as discussed in Sects. 12.4 and 12.5 relate to emerging network behaviour is dis-
cussed in this section.
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12.6.1 Network Behaviour for Special Cases

As a first case, a network without cycles is considered. The following theorem has
been proven using Lemma 1 from Sect. 12.3 and Proposition 1; see also Chap. 11,
Theorem 1, or Treur (2018a).

Theorem 2 (common state values provide equilibria) Suppose a network with
nonnegative connections is based on normalised and scalar-free combination
functions, and the states without any incoming connection have a constant value.
Then the following holds.

(a) Whenever all states have the same value V, the network is in an equilibrium
state.

(b) If for every state for its initial value V it holds V1 � V � V2, then for all t for
every state Y it holds V1 � Y(t) � V2. In an achieved equilibrium for every
state for its equilibrium value V it holds V1 � V � V2.

■

Also this theorem is adopted from Chap. 11, Theorem 2.

Theorem 3 (Common equilibrium state values; acyclic case) Suppose an acyclic
network with nonnegative connections is based on normalised and scalar-free
combination functions.

(a) If in an equilibrium state the independent states all have the same value V, then
all states have the same value V.

(b) If, moreover, the combination functions are monotonically increasing, and in an
equilibrium state the independent states all have values V with V1 � V � V2,
then all states have values V with V1 � V � V2.

■

The following is a useful basic lemma for dynamics of normalised networks with
combination functions that are (strictly) monotonically increasing and scalar-free.

Lemma 2 Let a normalised network with nonnegative connections be given and its
combination functions are monotonically increasing and scalar-free; then the fol-
lowing hold:

(a)

(i) If for some node Y at time t for all nodes X with xX,Y > 0 it holds X(t) � Y(t),
then Y(t) is decreasing at t: dY(t)/dt � 0.

(ii) If the combination functions are strictly increasing and at time t for all
nodes X with xX,Y > 0 it holds X(t) � Y(t), and a node X exists with
X(t) < Y(t) and xX,Y > 0, and the speed factor of Y is nonzero, then Y(t) is
strictly decreasing at t: dY(t)/dt < 0.
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(b)

(i) If for some node Y at time t for all nodes X with xX,Y > 0 it holds X(t) � Y
(t), then Y(t) is increasing at t: dY(t)/dt � 0.

(ii) If, the combination function is strictly increasing and at time t for all
nodes X with xX,Y > 0 it holds X(t) � Y(t), and a node X exists with
X(t) > Y(t) and xX,Y > 0, and the speed factor of Y is nonzero, then Y(t) is
strictly increasing at t: dY(t)/dt > 0.

■

The following theorem has been proven for strongly connected networks with
cycles using Lemma 1 and 2; see Chap. 11 (Lemma 2 and Theorem 3) or Treur
(2018a).

Theorem 4 (Common equilibrium state values; strongly connected cyclic case)
Suppose the combination functions of the normalised network N are scalar-free and
strictly monotonically increasing. Then the following hold.

(a) If the network is strongly connected itself, then in an equilibrium state all states
have the same value.

(b) Suppose the network has one or more independent states and the subnetwork
without these independent states is strongly connected. If in an equilibrium
state all independent states have values V with V1 � V � V2, then all states
have values V with V1 � V � V2. In particular, when all independent states
have the same value V, then all states have this same equilibrium value V.

■

12.6.2 Network Behaviour for the General Case

The first general, main theorem is formulated by Theorems 5 and 6.

Theorem 5 (main theorem on equilibrium state values, part I) Suppose the
network N is normalised and its combination functions are scalar-free and strictly
monotonic. Let SC(N) be the stratified condensation graph of N. Then in an
equilibrium state of N the following hold.

(a) Suppose C 2 SC(N) is a strongly connected component of N of level 0, and in
case it consists of a single state without any incoming connection, this state has
a constant value. Then the following hold:

(i) All states in N belonging to C have the same equilibrium value V.
(ii) If for the initial values V of all states in N belonging to C it holds V1 �

V � V2, then also for the equilibrium values V of all states in C it holds
V1 � V � V2.
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(iii) In particular, when all initial values of states in N belonging to C are
equal to one value V, then the equilibrium value of all states in C is also
V.

(b) Let C 2 SC(N) be a strongly connected component of N of level i > 0. Let
C1, … , Ck 2 SC(N) be the strongly connected components of N from which
C gets an incoming connection within the condensation graph SC(N). Then the
following hold.

(i) If for the equilibrium values V of all states in N belonging to C1 [ ��� [
Ck it holds V1 � V � V2, then for all states in N belonging to C for their
equilibrium value V it holds V1 � V � V2.

(ii) In particular, when all equilibrium values of all states in N belonging to
C1 [ ��� [ Ck are equal to one value V, then also the equilibrium values
of all states in N belonging to C are equal to the same V.

Proof

(a)

(i) follows from Theorem 3(a).
(ii) follows from Proposition 1(b).
(iii) This follows from (ii) with V1 = V2 = V.

(b)

(i) This follows from Theorem 3(b) applied to C augmented with (as inde-
pendent states) the states in C1 [ … [ Ck with outgoing connections to
states in C, with their values and these connections.

(ii) follows from (i) with V1 = V2 = V.

■

Theorem 6 (main theorem on equilibrium state values, part II) Suppose the
network N is normalised and its combination functions are scalar-free and strictly
monotonic. Let SC(N) be the stratified condensation graph of N. Then in an
equilibrium state of N the following hold.

(a) If the equilibrium values of all states in every strongly connected component of
level 0 in SC(N) are equal to one value V, then the equilibrium state values of
all states in N are equal to the same value V.

(b) If for the equilibrium values V of all states in every strongly connected com-
ponent of level 0 in SC(N) it holds V1 � V � V2, then for the equilibrium state
values V of all states in N it holds V1 � V � V2.

(c) Suppose the states without any incoming connection have a constant value. If
the initial values of all states in every strongly connected component of level 0
in SC(N) are equal to one value V, then for the equilibrium state values of all
states in N are equal to the same value V.
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(d) Suppose the states without any incoming connection have a constant value. If
for the initial values V of all states in every strongly connected component of
level 0 in SC(N) it holds V1 � V � V2, then for the equilibrium state values
V of all states in N it holds V1 � V � V2.

Proof This follows by using induction over the number of strata in SC(N) and
applying Theorem 4(a) for the level 0 stratum and Theorem 4(b) for the induction
step from the strata of level j < i to the stratum of level i > 0.

■

As an illustration, for the example simulation, the following implications of
these theorems can be found.

• Level 0 components
The strongly connected components of level 0 are the subnetworks based on
{X1} and {X5, X6, X7} (see Figs. 12.5 and 12.6). As shown in Box 12.1, the
initial values of X1 and X5 are 0.9, and the initial values for all other states are 0.
From Theorem 5(a)(i) and 4(a)(ii), it follows that the equilibrium value of X1 is
0.9, which indeed is the case, and those of X5, X6, X7 are the same and � 0.9;
this is indeed confirmed in Fig. 12.3, as these three equilibrium values of X5, X6,
X7 are all 0.3. This value 0.3 depends on the initial values of the states and the
connection weights, which are not taken into account in the theorems; however,
see also Theorem 7 below.

• Level 1 component
For the level 1 component C3, based on {X2, X3, X4}, it goes as follows. The
only incoming connection for C3 is from X1, which has equilibrium value 0.9
(implied by Theorem 5(a)(ii)). By Theorem 5(b)(ii) it follows that X2, X3, X4 all
have the same equilibrium value 0.9; this is indeed confirmed in Fig. 12.3.

• Level 2 component
The level 2 component C4 is based on {X8, X9, X10}. It has two incoming
connections, one from X3 in C3 and one from X5 in C2. Their equilibrium values
are 0.9 and 0.3, respectively, so they are not equal. Therefore the above theo-
rems do not imply that the equilibrium values of X8, X9, X10 are the same; indeed
in Fig. 12.3 they are different: 0.681, 0.490, and 0.389, respectively. But there is
still an implication from Theorem 5(b)(i), namely, that these equilibrium values
should be � 0.3 and � 0.9. This is indeed confirmed in Fig. 12.3.

This illustrates how the above theorems have implications for simulations. Note that
the specific equilibrium values 0.681, 0.490, and 0.389 are not predicted here. They
also depend on the connection weights for the states X8, X9, X10 within component
C4, and these are not taken into account in the theorems; however see also below, in
the last part of this section.

Consider a variation, by setting the initial value of X1 at 0.3 instead of 0.9. Then
all equilibrium values turn out to become the same 0.3; see Fig. 12.8. Now the
values of all states in the level 0 components C1 and C2 have the same value 0.3. As
above, also the states in C3 have the equilibrium value 0.3 because they are only
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affected by X1 which has value 0.3. But now the equilibrium values of both X3 in C3

and X5 in C2 are the same 0.3, so this time Theorem 5(b)(ii) can be applied to derive
that all states in C4 also have that same equilibrium value 0.3.

This predicts that all states of the network have value 0.3 in the equilibrium.
Alternatively, Theorem 6(a) can be applied for this case. By that theorem from the
equal equilibrium values in the level 0 components C1 and C2 it immediately
follows that all states in all components in the network have that same equilibrium
value.

As seen above, in the theorems the level 0 components play a central role, as
initial nodes in the stratified condensation graph SC(N). Therefore it can be useful
to know more about them, for example, how their initial values determine all
equilibrium values in the network. This is addressed for the case of a linear com-
bination function in the following theorem. For a proof, see Chap. 15, Sect. 15.7.

Theorem 7 (equilibrium state values in relation to level 0 components in the
linear case) Suppose the network N is normalised and the combination functions
are strictly monotonically increasing and linear. Assume that the states at level 0
that form a singleton component on their own are constant.
Then the following hold:

(a) For each state Y its equilibrium value is independent of the initial values of all
states at some level i > 0. It is only dependent on the initial values for the states
at level 0.
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Fig. 12.8 Variation of the example simulation for initial value 0.3 of X1
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(b) More specifically, let B1, … , Bp be the states in level 0 components. Then for each
state Y its equilibrium value eqY is described by a linear function of the initial values
V1, … , Vp for B1, … , Bp, according to the following weighted average:

eqY V1; . . .;Vp
� � ¼ dB1;YV1 þ � � � þ dBp;YVp

Here the dBi;Y are real numbers between 0 and 1 and the sum of them is 1:

dB1;Y þ � � � þ dBp;Y ¼ 1

(c) Each dBi;Y is the equilibrium value for Y when the following initial values are
used: Vi = 1 and all other initial values are 0:

dBi;Y ¼ eqYð0; . . .; 0; 1; 0; . . .; 0Þ with 1 as ith argument:

Note that Theorem 7(c) can be used to determine the values of the numbers dBi;Y by
simulation for each of these p initial value settings. However, in Sect. 12.7 it will
also be shown how they can be determined by symbolically solving the equilibrium
equations. Based on Theorem 7, for the case of linear combination functions, for
level 0 components after each value dBi;Y is determined, any equilibrium value can
be predicted from the initial values by the identified linear expression.

Note that for the case of linear combination functions the equilibrium equations
are linear and could be solved algebraically. But this does not provide additional
information for nonsingleton level 0 components. They have an infinite number of
solutions as every common value V is a solution; apparently, the linear equations
always have a mutual dependency in this case. However, for components of level
i > 0, solving the linear equations can provide specific values, due to the specific
input values they get from one or more lower level components. In Sect. 12.7 such
implications of the theorems for some example networks are shown. The next
theorems show some variations on Theorem 7.

Theorem 8 (equilibrium state values for level 0 components) Suppose the
network N with states X1, … , Xn is normalised and strongly connected. Then the
following hold.

(a) If the combination functions of the network N are scalar-free, then for given
connection weights and speed factors, for any value V 2 [0, 1] there are initial
values such that V is the common state value in an equilibrium achieved from
these initial values.

(b) For given connection weights and speed factors, let eq: [0, 1]n ! [0, 1] be the
function such that eq(V1, … , Vn) is the common state value for an equilibrium
achieved from initial values Xi (0) = Vi for all i. Then eq(0, … , 0) = 0, eq(1,..,
1) = 1, and the following hold:

(i) If the combination functions of the network are scalar-free, then eq is
scalar-free
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(ii) If the combination functions of the network are additive, then eq is
additive.

(c) Suppose the combination functions of the network N are linear. For given
connection weights and speed factors for each i let ei be the achieved common
equilibrium value for initial values Xi(0) = 1 and Xj(0) = 0 for all j 6¼ i, i.e.,
ei = eq(0,… , 0, 1, 0,… , 0) with 1 as ith argument. Then the sum of the ei is 1,
i.e., e1 + ��� + en = 1 and in the general case for these given connection weights
and speed factors, the common equilibrium value eq(…) is a linear, mono-
tonically increasing, continuous and differentiable function of the initial values
V1, … , Vn satisfying the following linear relation:

eq V1; . . .;Vnð Þ ¼ e1V1 þ . . .þ enVn

If the combination functions of N are strictly increasing, then ei > 0 for all i,
and eq is also strictly increasing.

Proof (a) This follows from Proposition 1(a) or (d) with V1 = V2 = V.
(b) and (c) This follows from Proposition 1(b) and (c), and Lemma 2.

■

For a proof of the following theorem, see Chap. 15, Sect. 15.7.

Theorem 9 (equilibrium state values for components of level i > 0) Suppose the
network is normalised, and consists of a strongly connected component plus a
number of independent states A1, … , Ap with outgoing connections to this strongly
connected component. Then the following hold

(a) Suppose the combination functions are scalar-free and X1, … , Xk are the states
from which Y gets its incoming connections. If for U1, … , Uk, V1, … , Vk and
a � 0 it holds Vi = aUi for all i, then cYðxX1;YV1, … , xXk ;YVk) =
a cYðxX1;YU1, … , xXk ;YUk)

(b) Suppose the combination functions are additive and X1, … , Xk are the states
from which Y gets its incoming connections. Then if for values U1, … , Uk,
V1, … , Vk, W1, … , Wk it holds Wi = Ui+ Vi for all i, then

cYðxX1;YW1; . . .;xXk ;YWkÞ ¼ cYðxX1;YU1; . . .;xXk ;YUkÞþ cYðxX1;YV1; . . .;xXk ;YVkÞ

(c) Suppose all combination functions of the network N are linear. Then for given
connection weights and speed factors, for each state Y the achieved equilibrium
value for Y only depends on the equilibrium values V1, … , Vp of states A1, … ,
Ap; the function eqY(V1, … , Vp) denotes this achieved equilibrium value for Y.

(d) Suppose the combination functions of the network N are linear. For the given
connection weights and speed factors for each i let di,Y be the achieved equi-
librium value for state Y in a situation with equilibrium values Ai = 1 and
Aj = 0 for all j 6¼ i, i.e., di,Y = eqY(0, … , 0, 1, 0,.., 0) with 1 as ith argument.
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Then in the general case for these given connection weights and speed factors,
for each Y in the strongly connected component its equilibrium value is a linear,
monotonically increasing, continuous and differentiable function eqY(…) of the
equilibrium values V1, … , Vp of A1, … , Ap satisfying the following linear
relation: eqY(V1, … , Vp) = d1,Y V1 + ��� + dp,Y Vp. Here the sum of the di,Y is
1: d1,Y + ��� + dp,Y = 1. In particular, the equilibrium values are independent of
the initial values for all states Y different from A1, … , Ap. If the combination
functions of N are strictly increasing, then di,Y > 0 for all i, and eqY(..) is also
strictly increasing.

Note that by using Theorem 3 instead of Theorem 5(b)(ii) in the above proof a
similar theorem is obtained for the case of an acyclic network: then the equilibrium
values of all states are linear combinations of the values of the initial states.

12.7 Further Implications for Example Networks

In this section, it is shown what further conclusions can be drawn from the theorems
presented in Sect. 12.6 for the example described in Sect. 12.3 and for an example
Mental Network described in Schoenmaker et al. (2018). This shows that the
applicability goes beyond only Social Networks. First, the earlier example descri-
bed in Sect. 12.3 is analysed; after that the new example will be addressed.

12.7.1 Further Analysis of the Example Network
from Sect. 12.3.2

Theorems 7 to 9 are illustrated by the example network shown in Fig. 12.2 as follows.
Here there is only one independent constant state X1 with singleton component.
Moreover, the states in the other level 0 component C2 are X5, X6, X7 respectively (see
Fig. 12.5). So, from Theorem 7 it follows that the equilibrium value of any state Y is

eqY V1; V2; V3;V4ð Þ ¼ dX1;YV1 þ dX5;YV2 þ dX6;YV3 þ dX7;YV4 ð12:3Þ

where V1, V2, V3, V4 are the initial values of the states X1, X5, X6, X7 in the level 0
components C1 and C2. For the example states Y 2 {X8, X9, X10} the coefficients
dX1,Y, dX5,Y, dX6,Y, dX7,Y have been determined by simulation for the connection
weights shown in Box 12.1 (and using speed factors 0.5), with these results shown
in Table 12.4.

So, for example, for Y = X8 the four coefficients are:

dX1;X8 ¼ 0:634921 dX5;X8 ¼ 0:121693 dX6;X8 ¼ 0:121693 dX7;X8 ¼ 0:121693
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Therefore, in a sense, the equilibrium value of X8 can be considered to be
determined for 63.5% by the constant value of X1 and for 12.2% by each of the
initial values of X5, X6, X7. These four values indeed sum up to 1 or 100%. Note that
in this case, the last three coefficients happen to be equal, as for the sake of
simplicity this component is just one cycle and is therefore highly symmetric; this is
not always the case. More specifically, given the above values, for the considered
case the equilibrium value for X8 is given by

eqX8
V1;V2;V3;V4ð Þ ¼ 0:634921V1 þ 0:121693V2 þ 0:121693V3 þ 0:121693V4

ð12:4Þ

with V1 the constant value of X1 and V2, V3, V4 the initial values of X5, X6, X7,
respectively. This is indeed confirmed in simulations.

For the considered example, as the scaled sum used is linear, solving the linear
equations can also provide specific values. In this way, in line with Theorems 7 to 9
the specific equilibrium values of the states X8, X9 and X10 in C4 can be determined
algebraically from the values of the states X3, X5, and X7 in the lower level com-
ponents C2 and C3 (repetitive digits in italics). Using a symbolic solver (the online
WIMS Linear Solver tool1 was used), this can be done more in general. The linear
equilibrium equations are:

ðxX3;X8 þxX10;X8ÞX8 ¼ xX3;X8X3 þxX10;X8X10

ðxX5;X9 þxX8;X9ÞX9 ¼ xX5;X9X5 þxX8;X9X8

ðxX7;X10 þxX9;X10ÞX10 ¼ xX7;X10X7 þxX9;X10X9

ð12:5Þ

These general equations have the following unique symbolic solution when X3, X5,
X7 are assumed given from the lower level components:

Table 12.4 Coefficients of the linear relations between equilibrium values and initial values

X1 X5 X6 X7

X8 0.634921 0.121693 0.121693 0.121693
X9 0.31746 0.227513 0.227513 0.227513
X10 0.148148 0.283951 0.283951 0.283951

dX1,Y dX5,Y dX6,Y dX7,Y

1http://wims.unice.fr/wims/wims.cgi?session=DH1DFC9A6E.3&+lang=en&+module=tool%
2Flinear%2Flinsolver.en.
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X8 ¼ ðxX10;X8ðxX7;X10xX8;X9X7 þxX5;X9xX7;X10X7 þxX5;X9xX9;X10X5Þ
þxX3;X8ðxX8;X9ðxX9;X10 þxX7;X10ÞþxX5;X9ðxX9;X10 þxX7;X10ÞÞX3Þ
=ðxX3;X8ðxX8;X9ðxX9;X10 þxX7;X10ÞþxX5;X9ðxX9;X10 þxX7;X10ÞÞ
þxX10;X8ðxX5;X9ðxX9;X10 þxX7;X10ÞþxX7;X10xX8;X9ÞÞ

X9 ¼ ðxX10;X8ðxX7;X10xX8;X9X7 þxX5;X9ðxX9;X10 þxX7;X10ÞX5Þ
þxX3;X8xX5;X9ðxX9;X10 þxX7;X10ÞX5 þxX3;X8xX8;X9ðxX9;X10 þxX7;X10ÞX3Þ
=ðxX3;X8ðxX8;X9ðxX9;X10 þxX7;X10ÞþxX5;X9ðxX9;X10 þxX7;X10ÞÞ
þxX10;X8ðxX5;X9ðxX9;X10 þxX7;X10ÞþxX7;X10xX8;X9ÞÞ

X10 ¼ ðxX3;X8ðxX7;X10xX8;X9X7 þxX5;X9xX7;X10X7 þxX5;X9xX9;X10X5Þ
þxX10;X8ðxX7;X10wX8;X9X7 þxX5;X9xX7;X10X7 þxX5;X9xX9;X10X5Þ
þxX3;X8xX8;X9xX9;X10X3Þ=ðxX3;X8ðxX8;X9ðxX9;X10 þxX7;X10ÞþxX5;X9ðxX9;X10 þxX7;X10ÞÞ
þxX10;X8ðxX5;X9ðxX9;X10 þxX7;X10ÞþxX7;X10xX8;X9ÞÞ

From this the values of the coefficients dXi;Y of the linear relation from Theorem 8
can be determined:

X8 ¼ ðxX10;X8ðxX7;X10xX8;X9X7 þxX5;X9xX7;X10X7 þxX5;X9xX9;X10X5Þ
þxX3;X8ðxX8;X9ðxX9;X10 þxX7;X10ÞþxX5;X9ðxX9;X10 þxX7;X10ÞÞX3Þ
=ðxX3;X8ðxX8;X9ðxX9;X10 þxX7;X10ÞþxX5;X9ðxX9;X10 þxX7;X10ÞÞ
þxX10;X8ðxX5;X9ðxX9;X10 þxX7;X10ÞþxX7;X10xX8;X9ÞÞ

dX3;X8 ¼ xX3;X8ðxX8;X9ðxX9;X10 þxX7;X10ÞþxX5;X9ðxX9;X10 þxX7;X10ÞÞ
=ðxX3;X8ðxX8;X9ðxX9;X10 þxX7;X10ÞþxX5;X9ðxX9;X10 þxX7;X10ÞÞ
þxX10;X8ðxX5;X9ðxX9;X10 þxX7;X10ÞþxX7;X10xX8;X9ÞÞ

dX5;X8 ¼ xX10;X8xX5;X9xX9;X10

=ðxX3;X8ðxX8;X9ðxX9;X10 þxX7;X10ÞþxX5;X9ðxX9;X10 þxX7;X10ÞÞ
þxX10;X8ðxX5;X9ðxX9;X10 þxX7;X10ÞþxX7;X10xX8;X9ÞÞ

dX7;X8 ¼ xX10;X8ðxX7;X10xX8;X9 þxX5;X9xX7;X10Þ
=ðxX3;X8ðxX8;X9ðxX9;X10 þxX7;X10ÞþxX5;X9ðxX9;X10 þxX7;X10ÞÞ
þxX10;X8ðxX5;X9ðxX9;X10 þxX7;X10ÞþxX7;X10xX8;X9ÞÞ

X9 ¼ ðxX10;X8ðxX7;X10xX8;X9X7 þxX5;X9ðxX9;X10 þwX7;X10ÞX5Þ
þxX3;X8xX5;X9ðxX9;X10 þxX7;X10ÞX5 þxX3;X8xX8;X9ðxX9;X10 þxX7;X10ÞX3Þ
=ðxX3;X8ðxX8;X9ðxX9;X10 þxX7;X10ÞþxX5;X9ðxX9;X10 þxX7;X10ÞÞ
þxX10;X8ðxX5;X9ðxX9;X10 þxX7;X10ÞþxX7;X10xX8;X9ÞÞ
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dX3;X9 ¼ xX3;X8xX8;X9ðxX9;X10 þxX7;X10Þ
=ðwX3;X8ðwX8;X9ðwX9;X10 þwX7;X10ÞþwX5;X9ðwX9;X10 þwX7;X10ÞÞ
þxX10;X8ðxX5;X9ðxX9;X10 þxX7;X10ÞþxX7;X10xX8;X9ÞÞ

dX5;X9 ¼ xX5;X9ðxX10;X8 þxX3;X8ÞðxX9;X10 þxX7;X10Þ
=ðxX3;X8ðxX8;X9ðxX9;X10 þxX7;X10ÞþxX5;X9ðxX9;X10 þxX7;X10ÞÞ
þxX10;X8ðxX5;X9ðxX9;X10 þxX7;X10ÞþxX7;X10xX8;X9ÞÞ

dX7;X9 ¼ xX10;X8xX7;X10xX8;X9

=ðxX3;X8ðxX8;X9ðxX9;X10 þxX7;X10ÞþxX5;X9ðxX9;X10 þxX7;X10ÞÞ
þxX10;X8ðxX5;X9ðxX9;X10 þxX7;X10ÞþxX7;X10xX8;X9ÞÞ

X10 ¼ ðxX3;X8ðxX7;X10xX8;X9X7 þxX5;X9xX7;X10X7 þxX5;X9xX9;X10X5Þ
þxX10;X8ðxX7;X10xX8;X9X7 þxX5;X9X7 þxX5;X9xX7;X10X7 þxX5;X9xX9;X10X5Þ
þxX3;X8xX8;X9xX9;X10X3Þ=ðxX3;X8ðxX8;X9ðxX9;X10 þxX7;X10ÞþxX5;X9ðxX9;X10 þxX7;X10ÞÞ
þxX10;X8ðxX5;X9ðxX9;X10 þxX7;X10ÞþxX7;X10xX8;X9ÞÞ

dX3;X10 ¼ xX3;X8xX8;X9xX9;X10=ðxX3;X8ðxX8;X9ðxX9;X10 þxX7;X10ÞþxX5;X9ðxX9;X10 þxX7;X10ÞÞ
þxX10;X8ðxX5;X9ðxX9;X10 þxX7;X10ÞþxX7;X10xX8;X9ÞÞ

dX5;X10 ¼ xX5;X9xX9;X10ðxX3;X8 þxX10;X8Þ
=ðxX3;X8ðxX8;X9ðxX9;X10 þxX7;X10ÞþxX5;X9ðxX9;X10 þxX7;X10ÞÞ
þxX10;X8ðxX5;X9ðxX9;X10 þxX7;X10ÞþxX7;X10xX8;X9ÞÞ

dX7;X10 ¼ xX7;X10ðxX3;X8 þxX10;X8ÞðxX8;X9 þxX5;X9Þ
=ðxX3;X8ðxX8;X9ðxX9;X10 þxX7;X10ÞþxX5;X9ðxX9;X10 þxX7;X10ÞÞ
þxX10;X8ðxX5;X9ðxX9;X10 þxX7;X10ÞþxX7;X10xX8;X9ÞÞ

As a special case, if all x’s are set equal to one x, then the denominator becomes
7x3 and the following values are obtained:

dX3;X8 ¼ 4=7 dX3;X9 ¼ 2=7 dX3;X10 ¼ 1=7
dX5;X8 ¼ 1=7 dX5;X9 ¼ 4=7 dX5;X10 ¼ 2=7
dX7;X8 ¼ 2=7 dX7;X9 ¼ 1=7 dX7;X10 ¼ 4=7

Then the linear relations for the equilibrium values become:
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X8 ¼ 4=7X3 þ 1=7X5 þ 2=7X7

X9 ¼ 2=7X3 þ 4=7X5 þ 1=7X7

X10 ¼ 1=7X3 þ 2=7X5 þ 4=7X7

12.8 Analysis of an Example Mental Network

In this section, applicability is illustrated for a type of network which is not a social
network. In general Theorems 7 to 9 can be applied for many cases of networks that
receive external input. This varies from Mental Networks that get input from external
stimuli to Social Networks that are affected by context factors such as broadcasts
from external sources that are received by members of the network. As an example of
this, for the mental area, the Mental Network model from Schoenmaker et al. (2018)
has been analysed. The strongly connected components are as shown in Fig. 12.9,
with stratified condensation graph as in Fig. 12.10; for the connection weights and
other values, see the role matrices in Box 12.5. The model describes how the
emotional charge of a received tweet affects the decision to retweet it. It can be
explained by the following scenario considering Mark sending a tweet to Tim in
which he expresses that he cannot wait to sing in the Christmas choir next week.

This tweet contains both information and emotional charge: there is a choir performance
next week, and secondly, Mark makes clear that he cannot wait for this event to happen.
Tim’s interpretation of this message is positively influenced by the fact that Mark and Tim

C3

C2

C1

C4

C5

C6

Fig. 12.9 The strongly connected components within the second example network
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are friends. Tim does like to visit choir performances; therefore, he already has a positive
association on the information that this event will take place. Reading about this Christmas
performance, Tim gets slightly aroused and is focusing on the message. Mark’s enthusiasm
amplifies Tim’s attention and arousal, which in turn lead to a positive interpretation of the
tweet. Tim’s positive interpretation of the message coupled with the fact that he is good
friends with Mark and is excited about this performance leads to Tim’s decision to retweet
Mark’s original Tweet. (Schoenmaker et al. 2018), p. 138

The states within the box Agent 1 all have a scaled sum combination function.
The final state Sharing has alogisticr,s(..) as combination function. For a complete
overview of the role matrices, see Box 12.5. For the analysis, the above theorems
can be applied to the network when the state Sharing is left out of consideration.

The stratified condensation graph for this network is shown in Fig. 12.10.
From this stratified condensation graph a number of conclusions can be drawn:

• The level 0 states are the states Person, Information known and Emotional
charge in C1, C2, and C3, respectively; therefore these three states are the
determining factors for the whole network.

• The level 1 state Relation with person will have the same equilibrium value as
the level 0 state Person in C1.

• When all level 0 states have the same equilibrium value V, then also all level 1
and level 2 states Relation with person, Opinion, Attention, Arousal, and
Interpretation will have that same equilibrium value V. For example, when all
level 0 states are constant 1, then all states as mentioned will end up in equi-
librium value 1.

• When the level 0 states have different equilibrium values, then the level 2 states
Opinion, Attention, Arousal and Interpretation are expected to have different
equilibrium values too, these values lay between the maximal and minimal
values at level 0.

More specifically, in numbers, the following can be concluded. Suppose any given
constant values A1, A2, A3 for the level 0 components in C1, C2, C3, respectively.
Then:

C2

C1 C4

C5C3

level 0 level 1 level 2 level 3

C6

Fig. 12.10 Stratified
condensation graph SC(N) for
the second example network
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• at level 1 the equilibrium value in C4 is A1

• at level 2 the equilibrium values of all four states in C5 are between min(A1, A2,
A3) and max(A1, A2, A3)

• these equilibrium values of the four states in C5 are linear functions in the form
of weighted sums of A1, A2, A3

• when all Ai = A for one value, then at level 2 the equilibrium values of the states
in C5 are A as well

In Box 12.2 the differential equations are shown for this second example model,
and in Box 12.3 the equilibrium equations.

Box 12.2 Overview of the differential equations of the second example
network models

dRelation=dt ¼ gRelation½xPerson;RelationPerson� Relation�
dOpinion=dt ¼ gOpinion½ðxInformation;OpinionInformation

þxInterpretation;OpinionInterpretationÞ=kOpinion � Opinion�
dInterpretation=dt ¼ gInterpretation½ðxRelation;InterpretationRelation

þxOpinion;InterpretationOpinion

þxAttention;InterpretationAttention

þxArousal;InterpretationArousalÞ=kInterpretation � Interpretation�
dAttention=dt ¼ gAttention½ðxEmotion;AttentionEmotionþxRelation;AttentionRelation

þxOpinion;AttentionOpinion

þxInterpretation;AttentionInterpretationÞ=kAttention � Attention�
dArousal=dt ¼ gArousal½ðxEmotion;ArousalEmotionþxRelation;ArousalRelation

þxOpinion;ArousalOpinion

þxInterpretation;ArousalInterpretationÞ=kArousal � Arousal�
dSharing=dt ¼ gSharing½ðxRelation;SharingRelation

þxInterpretation;SharingInterpretation

þxArousal;SharingArousalÞ=kSharing � Sharing�
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Box 12.3 Overview of the equilibrium equations of the second example
network model

Relation ¼ xPerson;RelationPerson

Opinion ¼ ðxInformation;OpinionInformation

þxInterpretation;OpinionInterpretationÞ=kOpinion
Interpretation ¼ ðxRelation;InterpretationRelationþxOpinion;InterpretationOpinion

þxAttention;InterpretationAttention

þxArousal;InterpretationArousalÞ=kInterpretation
Attention ¼ ðxEmotion;AttentionEmotionþxRelation;AttentionRelation

þxOpinion;AttentionOpinion

þxInterpretation;AttentionInterpretationÞ=kAttention
Arousal ¼ ðxEmotion;ArousalEmotionþxRelation;ArousalRelation

þxOpinion;ArousalOpinion

þxInterpretation;ArousalInterpretationÞ=kArousal
Sharing ¼ ðxRelation;SharingRelationþxInterpretation;SharingInterpretation

þxArousal;SharingArousalÞ=kSharing

The linear equilibrium equations for the states other than Sharing can be solved
in a symbolic manner to obtain explicit algebraic expressions for their equilibrium
values (again the online WIMS Linear Solver tool was used); see Box 12.4. Here
subscripts are abbreviated for the sake of briefness.

Box 12.4 Explicit algebraic solutions of the equilibrium equations of the
second example network model; adopted from Schoenmaker et al. (2018)

Person ¼ X1 ¼ A1 Information ¼ X2 ¼ A2 Emotion ¼ X3 ¼ A3

Relation ¼ X4 ¼ xP;RA1

Opinion ¼ X5 ¼ �½A1xInt;OxP;RðkArkAtxR;Int

þ kArxAt;IntxRAt þ kAtxAr;IntxR;ArÞ
þA3ðkArxAt;IntxE;At þ kAtxAr;IntxE;ArÞxInt;O

þA2xInf;Oðð�kArxAt;IntxInt;AtÞ � kAtxAr;IntxInt;Ar þ kArkAtkIÞ
=½xInt;OðkArkAtxO;Int þ kArxAt;IntxO;At þ kAtxAr;IntxO;ArÞ
þ kOðkArxAt;IntxInt;At þ kAtxAr;IntxInt;Ar � kArkAtkIÞ�
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Interpretation ¼X6 ¼ �½A1kOxP;RðkArkAtxR;Int þ kArxAt;IntxR;At þ kAtxAr;IntxR;ArÞ
þA2xInf;OðkArkAtxO;Int þ kArxAt;IntxO;At þ kAtxAr;IntxO;ArÞ
þA3kOðkArxAt;IntxE;At þ kAtxAr;IntxE;ArÞ�
=½xInt;OðkArkAtxO;Int þ kArxAt;IntxO;At þ kAtxAr;IntxO;ArÞ
þ kOðkArxAt;IntxInt;At þ kAtxAr;IntxInt;Ar � kArkAtkIÞ�

Attention ¼ X7 ¼ �½A1xP;RðxInt;OðkArxO;AtxR;Int

þxAr;IntðxO;AtxR;Ar � xO;ArxR;AtÞ � kArxO;IntxR;AtÞ
þ kOðkArxInt;AtxR;Int

þxAr;IntðxInt;AtxR;Ar � xInt;ArxR;AtÞþ kArkIxR;AtÞÞ
þA3ðxInt;OðxAr;IntðxE;ArxO;At � xE;AtxO;ArÞ � kArxE;AtxO;IntÞ
þ kOðxAr;IntðxE;ArxInt;At � xE;AtxInt;AtÞþ kArkIxE;AtÞÞ
þA2xInf;OðkArxInt;AtxO;Int

þxAr;IntðxInt;AtxO;Ar � xInt;ArxO;AtÞþ kArkIxO;AtÞ�
=½xInt;OðkArkAtxO;Int þ kArxAt;IntxO;At þ kAtxAr;IntxO;ArÞ
þ kOðkArxAt;IntxInt;At þ kAtxAr;IntxInt;Ar � kArkAtkIÞ�

Arousal ¼ X8 ¼ �½A1xP;RðxInt;OðkAtxO;ArxR;Int

þxAt;IntðxO;ArxR;At � xO;AtxR;ArÞ � kAtxO;IntxR;ArÞ
þ kOðkAtxInt;ArxR;Int

þxAt;IntðxInt;ArxR;At � xInt;AtxR;ArÞþkAtkIxR;ArÞÞ
þA3ðxInt;OðxAt;IntðxE;AtxO;Ar � xE;ArxO;AtÞ � kAtxE;ArxO;IntÞ
þ kOðxAt;IntðxE;AtxInt;Ar � xE;ArxInt;AtÞþ kAtkIxE;ArÞÞ
þA2xInf;OðkAtxInt;ArxO;Int

þxAt;IntðxInt;ArxO;At � xInt;AtxO;ArÞþ kAtkIxO;ArÞ�
=½xInt;OðkArkAtxO;Int þ kArxAt;IntxO;At þ kAtxAr;IntxO;ArÞ
þ kOðkArxAt;IntxInt;Atþ kAtxAr;IntxInt;Ar � kArkAtkÞ�

As can be seen, each of the equilibrium values is a linear combination of the
three values A1, A2, A3 (as predicted by Theorem 8), where the coefficients are
expressed in terms of specific connection weights and scaling factors. For example,
this means that if all of these values A1, A2, A3 are reduced by 20%, all equilibrium
values will be reduced by 20%. This indeed is the case in simulation examples. If
the values of the connection weights and scaling factors are assigned as in the role
matrices in Box 12.5, then the outcomes of the equilibrium values are (here the
italic digits are repetitive):
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Person ¼ X1 ¼ A1 Information ¼ X2 ¼ A2 Emotion ¼ X3 ¼ A3

Relation ¼ X4 ¼ A1

Opinion ¼ X5 ¼ 0:17307692A3 þ 0:682692307A2 þ 0:1442307692A1

Interpretation ¼ X6 ¼ 0:40384615A3 þ 0:259615384A2 þ 0:336538461A1

Attention ¼ X7 ¼ 0:65384615A3 þ 0:13461538A2 þ 0:21153846A1

Arousal ¼ X8 ¼ 0:65384615A3 þ 0:13461538A2 þ 0:21153846A1

Box 12.5 Example values for the connection weights, adopted from
Schoenmaker et al. (2018)
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It can be seen that each of these equilibrium state values is a weighted average of
A1, A2, and A3 (for each the sum of these weights is 1, as predicted by Theorem 8).
Therefore, in particular, when all Ai are 1, all of these outcomes are 1. If only A1

and A2 are 1, then the outcomes depend just on the emotional charge A3:

Person ¼ X1 ¼ 1:0 Information ¼ X2 ¼ 1:0 Emotion ¼ X3 ¼ A3

Relation ¼ X4 ¼ 1:0

Opinion ¼ X5 ¼ 0:17307692A3 þ 0:82692307

Interpretation ¼ X6 ¼ 0:40384615A3 þ 0:59615384

Attention ¼ X7 ¼ 0:6538461A3 þ 0:3461538

Arousal ¼ X8 ¼ 0:6538461A3 þ 0:3461538

Sharing ¼ X9 ¼ alogisticr;sð0:5; 0:40384615A3

þ 0:59615384; 0:6538461A3 þ 0:3461538Þ

It can be seen from this analysis that the equilibrium values of Attention and
Arousal depend for about 65% on the emotional charge level and as a consequence,
the impact of the emotional charge on the equilibrium value of Interpretation is
about 40%. The effect of emotional charge on Sharing works through two causal
pathways: via Interpretation and via Arousal. This leads to the function

Sharing ¼ alogisticr;sð0:5; 0:40384615A3

þ 0:59615384; 0:6538461A3 þ 0:3461538Þ ð12:6Þ

of A3, which is a monotonically increasing function of A3.

12.9 Discussion

To analyse and predict from its structure what behaviour a given network model
will eventually show is in general a challenging issue. For example, do all states in
the network eventually converge to the same value? Some results are available for
the case of acyclic, fully connected or strongly connected networks and for linear
combination functions only; e.g., Bosse et al. (2015). It is often believed that when
nonlinear functions are used, such results become impossible. Also, networks that
are not strongly connected are often not addressed as they are more difficult to
handle. This chapter shows what is still possible beyond the case of linear com-
bination functions and also beyond the case of strongly connected networks. Parts
of this chapter were adopted from Treur (2018b).

In this chapter general theorems were presented that relate network behaviour to
the network structure characteristics. The relevant network structure characteristics
concern two types of them:
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• Network connectivity characteristics in terms of the network’s strongly con-
nected components and their mutual connections as shown in the network’s
condensation graph

• Network aggregation characteristics in terms of the combination functions used
to aggregate the effects of multiple incoming connections (in particular,
monotonicity, scalar-freeness, and normalisation).

The first item makes the approach applicable to any type of network connec-
tivity, thus going beyond the limitation to strongly connected networks. The second
item makes the approach applicable to a wider class of combination functions (most
of which are nonlinear) going beyond the limitation to linear functions. However,
there are also nonlinear functions that are not covered by this class. Some examples
not covered are logistic functions, discrete threshold functions, and boolean func-
tions, for example, as used in Karlsen and Moschoyiannis (2018), Watts (2002).
The current chapter provides a first step to cover certain types of nonlinear func-
tions. Nonlinear functions not covered yet form a next challenge that has been left
open for now. In future research also other types of nonlinear functions will be
explored further. Note that the notion of temporal-causal network itself is not a
limitation as it is a very general notion which covers all types of discrete or smooth
dynamical systems, and all systems of first-order differential equations. For these
results, see Treur (2017), building further, among others, on Ashby (1960) and Port
and van Gelder (1995).

The presented theorems subsume and generalise existing theorems for specific
cases such as similar theorems for acyclic networks, fully connected networks and
strongly connected networks (e.g., Theorems 3 and 4 in Sect. 12.6), and theorems
addressing only linear combination functions as one fixed type of combination
function; e.g., Theorem 3 at p. 120 of Bosse et al. (2015).

The theorems can be applied to predict behaviour of a given network, or to
determine initial values in order to get some expected behaviour. In particular, they
can be used as a method of verification to check the correctness of the imple-
mentation of a network. If simulation outcomes contradict the implications of the
theorems, then some debugging of the implementation may be needed.

As already indicated in the Introduction section, after having developed the
theorems presented here, it has turned out that these contributions also have some
relations to research conducted from a different angle, namely on control of net-
works; e.g., Liu et al. (2011, 2012), Moschoyiannis et al. (2016), Haghighi and
Namazi (2015), Karlsen and Moschoyiannis (2018). In that area, e.g., Liu et al.
(2011, 2012), usually a system of linear differential equations is used for the
dynamics of the considered network with N nodes x1, … , xN represented over time
t by states x(t) = (x1(t), … , xN(t)). The dynamics is based on the connections with
weights aij from xj to xi, overall represented by a matrix A = (aij). For the control
M additional nodes u1, … , uM are added, which are numerically represented over
time t by states u(t) = (u1(t),… , uM(t)). These are meant to provide input at all time
points in order to affect some of the network states (called drivers) over time. The
latter nodes have connections to these driver nodes represented by an N � M input
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matrix B = (bij) where bij represents the weight of the connection from node uj to
node xi. Then overall the dynamics of the extended network can be represented as

dxðtÞ=dt ¼ AxðtÞþBuðtÞ

Reachability within the network relates to the powers of matrix A and con-
trollability of the network from the states u1, … , uM relates to the combined
N � NM matrix C = (B, AB, … , AN−1B) 2 RN�NM. Although precise mathe-
matical criteria e.g., Kalman (1963) exist for this matrix C characterizing con-
trollability of the network, such criteria often cannot be applied in practice as they
depend on the precise values of the connection weights aij and in practical contexts
usually these are not known. Therefore in literature such as (Liu et al. 2011, 2012)
these weights are considered parameters, which introduces some complications:
criteria for certain slightly different forms of (called structural) controllability are
expressed in relation to these parameters e.g., Lin (1974); however, such criteria
apply to (by far) most but not exactly all of such linear systems.

In contrast to the network control approach sketched in the previous paragraph,
in the approach presented in the current chapter the lack of knowledge of specific
weight values is not an issue, as these specific values are not used. Moreover, the
theorems and their proofs do not make use of linearity assumptions, but instead of
identified properties of a wider class of functions also including (a subset of the
class of) nonlinear functions. Another difference is that the angle of controlling a
network was not addressed in the current chapter, as the focus was on an angle of
verification of a network model. However, some of the theorems still can be used
for controlling a network. For example, Theorem 6 can be applied when the states
u1, … , uM of the vector u in the above formalisation get outgoing connections
(represented in matrix B) to the states within the level 0 components in the original
network. Then the states within the level 0 components in the original network are
used as drivers. More specifically, this theorem provides the following results for
the considered class of nonlinear functions extending the class of linear functions:

• Theorem 6(a) and (b) show that the whole network can be controlled by only
controlling the final equilibrium values of the states within the level 0 compo-
nents of the network. This actually can be done by extending the network by
nodes ui that are connected to the states in level 0 components of the original
network. In the extended network this leads to singleton level 0 components
{ui} and the other levels are increased by 1; for example, the level 0 components
in the original network now become level 1 components in the extended net-
work. Then from Theorem 6(a) and (b) it follows that the equilibrium values of
all states in the network depend on the equilibrium values of the states ui in
the level 0 components {ui}, and these equilibrium values are limt!1 ui tð Þ,
i = 1, …, M.

• Note that if the ui are kept constant over time, these limit values of the ui are just
the initial values ui(0); in this case Theorem 6(c) and (d) apply. For example, for
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this case Theorem 6(c) shows that if these initial values ui(0) are all set at 1, then
after some time all states of the network will get equilibrium value 1.

This illustrates how all states of the network can be controlled by only con-
trolling the states within the level 0 components. Note that this has a partial overlap
with what is found in Liu et al. (2012) for the linear case, where also a decom-
position based on the network’s strongly connected components is used. In
Theorems 7 to 9 above it is described that some more can be said about how exactly
the equilibrium value of each of the network’s nodes depends on the initial or final
values of the states in the level 0 components. In particular for the linear case, this
equilibrium value of each state of the network is a linear function of the initial or
equilibrium values of the states in the level 0 components.
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