33 research outputs found

    Assessment of table olives' organoleptic defect intensities based on the potentiometric fingerprint recorded by an electronic tongue

    Get PDF
    Table olives are prone to the appearance of sensory defects that decrease their quality and in some cases result in olives unsuitable for consumption. The evaluation of the type and intensity of the sensory negative attributes of table olives is recommended by the International Olive Council, although not being legally required for commercialization. However, the accomplishment of this task requires the training and implementation of sensory panels according to strict directives, turning out in a time-consuming and expensive procedure that involves a degree of subjectivity. In this work, an electronic tongue is proposed as a taste sensor device for evaluating the intensity of sensory defects of table olives. The potentiometric signal profiles gathered allowed establishing multiple linear regression models, based on the most informative subsets of signals (from 24 to 29 recorded during the analysis of olive aqueous pastes and brine solutions) selected using a simulated annealing meta-heuristic algorithm. The models enabled the prediction of the median intensities (R2 ≥ 0.942 and RMSE ≤ 0.356, for leave-one-out or repeated K-fold cross-validation procedures) of butyric, musty, putrid, winey-vinegary, and zapateria negative sensations being, in general, the predicted intensities within the range of intensities perceived by the sensory panel. Indeed, based on the predicted mean intensities of the sensory defects, the electrochemical-chemometric approach developed could correctly classify 86.4% of the table olive samples according to their trade category based on a sensory panel evaluation and following the International Olive Council regulations (i.e., extra, 1st choice, 2nd choice, and olives that may not be sold as table olives). So, the satisfactory overall predictions achieved demonstrate that the electronic tongue could be a complementary tool for assessing table olive defects, reducing the effort of trained panelists and minimizing the risk of subjective evaluations.This work was financially supported by Project POCI-01-0145-FEDER-006984—Associate Laboratory LSRE-LCM, by Project UID/QUI/00616/2013 —CQ-VR, and UID/AGR/00690/ 2013—CIMO, all funded by Fundo Europeu de Desenvolvimento Regional (FEDER) through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI) and by national funds through Fundação para a Ciência e a Tecnologia (FCT), Portugal. Strategic funding of UID/BIO/04469/2013 unit is also acknowledged. Nuno Rodrigues thanks FCT, POPH-QREN, and FSE for the Ph.D. Grant (SFRH/BD/104038/2014).info:eu-repo/semantics/publishedVersio

    Long-term passive acoustic recordings track the changing distribution of North Atlantic right whales (Eubalaena glacialis) from 2004 to 2014

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 7 (2017): 13460, doi:10.1038/s41598-017-13359-3.Given new distribution patterns of the endangered North Atlantic right whale (NARW; Eubalaena glacialis) population in recent years, an improved understanding of spatio-temporal movements are imperative for the conservation of this species. While so far visual data have provided most information on NARW movements, passive acoustic monitoring (PAM) was used in this study in order to better capture year-round NARW presence. This project used PAM data from 2004 to 2014 collected by 19 organizations throughout the western North Atlantic Ocean. Overall, data from 324 recorders (35,600 days) were processed and analyzed using a classification and detection system. Results highlight almost year-round habitat use of the western North Atlantic Ocean, with a decrease in detections in waters off Cape Hatteras, North Carolina in summer and fall. Data collected post 2010 showed an increased NARW presence in the mid-Atlantic region and a simultaneous decrease in the northern Gulf of Maine. In addition, NARWs were widely distributed across most regions throughout winter months. This study demonstrates that a large-scale analysis of PAM data provides significant value to understanding and tracking shifts in large whale movements over long time scales.This research was funded and supported by many organizations, specified by projects as follows: Data recordings from region 1 were provided by K. Stafford and this research effort was funded by the National Science Foundation #NSF-ARC 0532611. Region 2 data were provided by D. K. Mellinger and S. Nieukirk, funded by National Oceanic and Atmospheric Agency (NOAA) and the Office of Naval Research (ONR) #N00014–03–1–0099, NOAA #NA06OAR4600100, US Navy #N00244-08-1-0029, N00244-09-1-0079, and N00244-10-1-0047

    The relationship among oceanography, prey fields, and beaked whale foraging habitat in the Tongue of the Ocean

    Get PDF
    This article is distributed under the terms of the Creative Commons CC0 public domain dedication. The definitive version was published in PLoS One 6 (2011): e19269, doi:10.1371/journal.pone.0019269.Beaked whales, specifically Blainville's (Mesoplodon densirostris) and Cuvier's (Ziphius cavirostris), are known to feed in the Tongue of the Ocean, Bahamas. These whales can be reliably detected and often localized within the Atlantic Undersea Test and Evaluation Center (AUTEC) acoustic sensor system. The AUTEC range is a regularly spaced bottom mounted hydrophone array covering >350 nm2 providing a valuable network to record anthropogenic noise and marine mammal vocalizations. Assessments of the potential risks of noise exposure to beaked whales have historically occurred in the absence of information about the physical and biological environments in which these animals are distributed. In the fall of 2008, we used a downward looking 38 kHz SIMRAD EK60 echosounder to measure prey scattering layers concurrent with fine scale turbulence measurements from an autonomous turbulence profiler. Using an 8 km, 4-leaf clover sampling pattern, we completed a total of 7.5 repeat surveys with concurrently measured physical and biological oceanographic parameters, so as to examine the spatiotemporal scales and relationships among turbulence levels, biological scattering layers, and beaked whale foraging activity. We found a strong correlation among increased prey density and ocean vertical structure relative to increased click densities. Understanding the habitats of these whales and their utilization patterns will improve future models of beaked whale habitat as well as allowing more comprehensive assessments of exposure risk to anthropogenic sound.The data collection and analysis was funded by the Office of Naval Research as N00014-08-1-1162

    Spatial distribution and dive behavior of Gulf of Mexico Bryde’s whales: potential risk of vessel strikes and fisheries interactions

    No full text
    Bryde's whales Balaenoptera edeni are the only resident baleen whale species in the Gulf of Mexico (GoM), where they are extremely rare, have a restricted distribution, and re - present a unique evolutionary lineage. The reasons for the restricted distribution and small population size are unknown, but high levels of industrial activity in the GoM may be a major factor. We evaluated the geospatial overlap of GoM Bryde's whales with 2 industries known to impact baleen whale species: commercial shipping and commercial fisheries. We further evaluated the potential for impacts by examining the first dive behavior data collected from a kinematic tag attached to a GoM Bryde's whale for 3 d. Vessel traffic and fishery effort are low in GoM Bryde's whale habitat compared to the rest of the northern GoM, but several shipping lanes transit through the habitat, and the reef fish bottom longline fishery exerts considerable effort within the habitat. The tagged whale exhibited diel diving behavior with diurnal deep dives and foraging lunges at or near the sea floor, and shallow nocturnal diving, with 88% of its nighttime spent near the surface within the draught depths of most large commercial vessels. Given the location of commercial shipping traffic in GoM Bryde's whale habitat, ship strikes may pose a threat to this population if the whales commonly spend time near the surface, especially at night. Also, if bottom or near-bottom feeding is a normal feeding strategy for these whales, there is potential for entanglement in bottom longline gear. Managing these threats may improve population recovery

    Evaluating Impacts of Deep Oil Spills on Oceanic Marine Mammals

    No full text
    The Deepwater Horizon (DWH) oil spill may be indicative of future large, deep spills that may occur in the coming decades. Given that future deepwater spills are possible, critical considerations include (1) establishing baselines for oceanic marine mammal and populations in at-risk areas, (2) understanding the implications of response choices for oceanic marine mammals, (3) designing studies with adequate coverage for post-spill monitoring, and (4) identifying effective strategies for oceanic marine mammal restoration. In this chapter, we consider these four stages in the context of a series of hypothetical oil spill scenarios, identifying ways that lessons learned from the DWH oil spill and prior events can be applied to future disasters
    corecore