45 research outputs found
Local diversity in settlement, demography and subsistence across the southern Indian Neolithic-Iron Age transition: site growth and abandonment at Sanganakallu-Kupgal
The Southern Indian Neolithic-Iron Age transition demonstrates considerable regional variability in settlement location, density, and size. While researchers have shown that the region around the Tungabhadra and Krishna River basins displays significant subsistence and demographic continuity, and intensification, from the Neolithic into the Iron Age ca. 1200 cal. BC, archaeological and chronometric records in the Sanganakallu region point to hilltop village expansion during the Late Neolithic and ‘Megalithic’ transition period (ca. 1400–1200 cal. BC) prior to apparent abandonment ca. 1200 cal. BC, with little evidence for the introduction of iron technology into the region. We suggest that the difference in these settlement histories is a result of differential access to stable water resources during a period of weakening and fluctuating monsoon across a generally arid landscape. Here, we describe well-dated, integrated chronological, archaeobotanical, archaeozoological and archaeological survey datasets from the Sanganakallu-Kupgal site complex that together demonstrate an intensification of settlement, subsistence and craft production on local hilltops prior to almost complete abandonment ca. 1200 cal. BC. Although the southern Deccan region as a whole may have witnessed demographic increase, as well as subsistence and cultural continuity, at this time, this broader pattern of continuity and resilience is punctuated by local examples of abandonment and mobility driven by an increasing practical and political concern with water
Valorisation of sawdust through the combined microwave-assisted hydrothermal pre-treatment and fermentation using an oleaginous yeast
Oleaginous yeast, cultured on second-generation lignocellulosic resources, has the potential to be a key part of the future energy sector. However, the multiple unit operations necessary to produce concentrated hydrolysates, with a minimum of fermentation inhibitors, limit the applicability to date. In this study, a simple microwave-assisted hydrothermal pre-treatment step of oak or beech sawdust was deployed to produce an oligosaccharide-rich hydrolysate. This was then catabolised by the oleaginous yeast, Metschnikowia pulcherrima, avoiding the need for costly enzymatic or further chemical steps in the processing. Up to 85% of the sawdust’s hemicelluloses could be solubilised under these conditions, and 8 g/L DCW yeast with a 42% lipid content produced. While a number of studies have demonstrated that oleaginous yeasts possess high inhibitor tolerance, using this real lignocellulosic hydrolysate, we demonstrate that lipid production is actually very sensitive to inhibitor and carbon availability, and the optimal system is not the one that gives the highest hydrolysate or cell biomass. Indeed, the yeast was shown to detoxify the inhibitors in the process, but at high inhibitor loading, this leads to very poor lipid production, especially at high furfural levels. These findings clearly highlight the importance of considering multiple variables when real, complex lignocellulosic media are involved, tuning process conditions based on the desired fermentation outcomes
Synaptic Connectivity in Engineered Neuronal Networks
We have developed a method to organize cells in dissociated cultures using engineered chemical clues on a culture surface and determined their connectivity patterns. Although almost all elements of the synaptic transmission machinery can be studied separately in single cell models in dissociated cultures, the complex physiological interactions between these elements are usually lost. Thus, factors affecting synaptic transmission are generally studied in organotypic cultures, brain slices, or in vivo where the cellular architecture generally remains intact. However, by utilizing engineered neuronal networks complex phenomenon such as synaptic transmission or synaptic plasticity can be studied in a simple, functional, cell culture-based system. We have utilized self-assembled monolayers and photolithography to create the surface templates. Embryonic hippocampal cells, plated on the resultant patterns in serum-free medium, followed the surface clues and formed the engineered neuronal networks. Basic whole-cell patch-clamp electrophysiology was applied to characterize the synaptic connectivity in these engineered two-cell networks. The same technology has been used to pattern other cell types such as cardiomyocytes or skeletal muscle fibers. © 2014 Springer Science+Business Media New York