43 research outputs found

    KRAS-mutation status in relation to colorectal cancer survival: the joint impact of correlated tumour markers.

    Get PDF
    Background:Mutations in the Kirsten Ras (KRAS) oncogene are common in colorectal cancer (CRC). The role of KRAS-mutation status as a prognostic factor, however, is unclear. We evaluated the relationship between KRAS-mutation status and CRC survival, considering heterogeneity in this association by tumour and patient characteristics.Methods:The population-based study included individuals diagnosed with CRC between 1998-2007 in Western Washington State. Tumour specimens were tested for KRAS exon 2 mutations, the BRAF p.V600E mutation, and microsatellite instability (MSI). We used Cox regression to estimate hazard ratios (HR) and 95% confidence intervals (CI) for the association between KRAS-mutation status and disease-specific and overall survival. Stratified analyses were conducted by age, sex, tumour site, stage, and MSI. We conducted additional analyses combining KRAS-mutation, BRAF-mutation, and MSI status.Results:Among 1989 cases, 31% had KRAS-mutated CRC. Kirsten Ras (KRAS)-mutated CRC was associated with poorer disease-specific survival (HR=1.37, 95% CI: 1.13-1.66). This association was not evident in cases who presented with distant-stage CRC. Cases with KRAS-wild-type/BRAF-wild-type/MSI-high CRC had the most favourable prognosis; those with CRC exhibiting a KRAS- or BRAF-mutation and no MSI had the poorest prognosis. Patterns were similar for overall survival.Conclusion:Kirsten Ras (KRAS)-mutated CRC was associated with statistically significantly poorer survival after diagnosis than KRAS-wild-type CRC

    Characterization of the association between 8q24 and colon cancer: gene-environment exploration and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome-wide association studies and subsequent replication studies have shown that single nucleotide polymorphisms (SNPs) in the chromosomal region 8q24 are associated with colorectal cancer susceptibility.</p> <p>Methods</p> <p>We examined 11 SNP markers in the 8q24 region between 128.47 and 128.54 Mb, using a total of 1,987 colon cases and 2,339 controls who self-reported as white from two independent, well-characterized study populations. Analysis was performed separately within each study, and combined using random effects meta-analysis. Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (95% CIs) and to test for effect modification by known colon cancer risk factors. We also performed a meta-analysis combining our results with previous studies.</p> <p>Results</p> <p>We observed evidence of association for four SNPs in low to high linkage disequilibrium (r<sup>2 </sup>ranging from 0.18 to 0.93) localized in a 16.2 kb region defined by rs10505477 and rs1056368. The combined results for our two studies of colon cancer showed an OR of 1.10 (95% CI: 1.01-1.20, P<sub>trend </sub>= 0.023), and a meta-analysis of our results with previously reported studies of colon and colorectal cancer strongly support the association for this SNP (combined OR for rs6983267 = 1.21, 95% CI: 1.18-1.24, p = 5.5 × 10<sup>-44</sup>). We did not observe any notable evidence of effect modification by known colon cancer risk factors, and risk did not differ significantly by tumor site or stage.</p> <p>Conclusions</p> <p>Our study confirms the association between polymorphisms on chromosome 8q24 and colon cancer risk and suggests that the susceptibility locus in region 8q24 is not strongly modified by various lifestyle, environmental, and demographic risk factors for colon cancer.</p

    Transport Properties of Carbon-Nanotube/Cement Composites

    No full text
    This paper preliminarily investigates the general transport properties (i.e., water sorptivity, water permeability, and gas permeability) of carbon-nanotube/cement composites. Carboxyl multi-walled carbon nanotubes (MWNTs) are dispersed into cement mortar to fabricate the carbon nanotubes (CNTs) reinforced cement-based composites by applying ultrasonic energy in combination with the use of surfactants (sodium dodecylbenzene sulfonate and sodium dodecyl sulfate). Experimental results indicate that even at a very small dosage the addition of MWNTs can help decrease water sorptivity coefficient, water permeability coefficient, and gas permeability coefficient of cement mortar, which suggests that CNTs can effectively improve the durability properties of cement-based composites.Structural EngineeringCivil Engineering and Geoscience
    corecore