36 research outputs found

    A New Methodology for Contactless Energy System Using Inductive Coil Positioning Flexibility

    Get PDF
    This paper portrays a system, Contactlesstransmission of electrical energyfrom a power source to an electrical load without interconnecting conductor. As of late, expanded remote power exchange frameworks innovation exploration has prompted frameworks with higher effectiveness. Contactless transmission is helpful in situations where interconnecting wires are badly arranged, incomprehensible or perilous. These days electrically worked hardware's are associated with the supply by means of plugs & sockets, however can be hazardous or have constrained life in the vicinity of dampness. In dangerous areas and in submerged applications, the Contactless EnergyTransmission System(CETS), by which electrical energy may be transmitted, without electrical association or physical contact, through nonmagnetic media of low conductivity. The CETS has been utilized to exchange up to 5kW over a 10-mm crevice, utilizes high-frequency attractive coupling and empowers module power associations will be made in dangerous natural conditions without the danger of electric shock, short-circuiting, or starting. With contactless Inductive Power Transfer (IPT), it is conceivable to exchange electrical energy to stationary or mobile consumers without contacts, links, or slip rings, another precise and particular configuration displayed in this paper

    Classification and Regression Tree and Spatial Analyses Reveal Geographic Heterogeneity in Genome Wide Linkage Study of Indian Visceral Leishmaniasis

    Get PDF
    Genome wide linkage studies (GWLS) have provided evidence for loci controlling visceral leishmaniasis on Chromosomes 1p22, 6q27, 22q12 in Sudan and 6q27, 9p21, 17q11-q21 in Brazil. Genome wide studies from the major focus of disease in India have not previously been reported.We undertook a GWLS in India in which a primary ∌10 cM (515 microsatellites) scan was carried out in 58 multicase pedigrees (74 nuclear families; 176 affected, 353 total individuals) and replication sought in 79 pedigrees (102 nuclear families; 218 affected, 473 total individuals). The primary scan provided evidence (≄2 adjacent markers allele-sharing LOD≄0.59; nominal P≀0.05) for linkage on Chromosomes 2, 5, 6, 7, 8, 10, 11, 20 and X, with peaks at 6p25.3-p24.3 and 8p23.1-p21.3 contributed to largely by 31 Hindu families and at Xq21.1-q26.1 by 27 Muslim families. Refined mapping confirmed linkage across all primary scan families at 2q12.2-q14.1 and 11q13.2-q23.3, but only 11q13.2-q23.3 replicated (combined LOD = 1.59; P = 0.0034). Linkage at 6p25.3-p24.3 and 8p23.1-p21.3, and at Xq21.1-q26.1, was confirmed by refined mapping for primary Hindu and Muslim families, respectively, but only Xq21.1-q26.1 replicated across all Muslim families (combined LOD 1.49; P = 0.0045). STRUCTURE and SMARTPCA did not identify population genetic substructure related to religious group. Classification and regression tree, and spatial interpolation, analyses confirm geographical heterogeneity for linkages at 6p25.3-p24.3, 8p23.1-p21.3 and Xq21.1-q26.1, with specific clusters of families contributing LOD scores of 2.13 (P = 0.0009), 1.75 (P = 0.002) and 1.84 (P = 0.001), respectively.GWLS has identified novel loci that show geographical heterogeneity in their influence on susceptibility to VL in India

    A Review on the Mechanical Modeling of Composite Manufacturing Processes

    Get PDF
    © 2016, The Author(s). The increased usage of fiber reinforced polymer composites in load bearing applications requires a detailed understanding of the process induced residual stresses and their effect on the shape distortions. This is utmost necessary in order to have more reliable composite manufacturing since the residual stresses alter the internal stress level of the composite part during the service life and the residual shape distortions may lead to not meeting the desired geometrical tolerances. The occurrence of residual stresses during the manufacturing process inherently contains diverse interactions between the involved physical phenomena mainly related to material flow, heat transfer and polymerization or crystallization. Development of numerical process models is required for virtual design and optimization of the composite manufacturing process which avoids the expensive trial-and-error based approaches. The process models as well as applications focusing on the prediction of residual stresses and shape distortions taking place in composite manufacturing are discussed in this study. The applications on both thermoset and thermoplastic based composites are reviewed in detail

    Cosmological particle production and causal thermodynamics

    Get PDF
    The full linear causal Israel-Stewart-Hiscock theory of bulk viscous processes in relativistic cosmological fluids is reformulated as an effective phenomenological theory for describing particle production processes in the early universe. Explicit expressions for the particle balance law and particle production rates are obtained that relate the particle creation rate to the bulk viscous (creation) pressure. The general formalism is applied to the case of a full causal cosmological fluid with bulk viscosity coefficient proportional to the Hubble function. In this case the general solution of the gravitational field equations can be expressed in an exact parametric form. For an appropriate choice of the physical parameters, the dynamics of the universe can be modelled as starting from a vacuum quasi-Minkowskian geometry, followed by an inflationary period but ending in a non-inflationary phase. The influence of the matter creation processes on the evolution of the universe and the behaviour of the energy density, temperature and entropy are investigated. © CSIRO 1999.link_to_subscribed_fulltex
    corecore