41 research outputs found

    Interaction of RNA polymerase II and the small RNA machinery affects heterochromatic silencing in Drosophila

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Heterochromatin is the tightly packaged dynamic region of the eukaryotic chromosome that plays a vital role in cellular processes such as mitosis and meiotic recombination. Recent experiments in <it>Schizosaccharomyces pombe </it>have revealed the structure of centromeric heterochromatin is affected in RNAi pathway mutants. It has also been shown in fission yeast that the heterochromatin barrier is traversed by RNA Pol II and that the passage of RNA Pol II through heterochromatin is important for heterochromatin structure. Thus, an intricate interaction between the RNAi machinery and RNA Pol II affects heterochromatin structure. However, the role of the RNAi machinery and RNA Pol II on the metazoan heterochromatin landscape is not known. This study analyses the interaction of the small RNA machinery and RNA Pol II on <it>Drosophila </it>heterochromatin structure.</p> <p>Results</p> <p>The results in this paper show genetic and biochemical interaction between RNA Pol II (largest and second largest subunit) and small RNA silencing machinery components (<it>dcr-2, ago1, ago2, piwi, Lip [D], aub </it>and <it>hls</it>). Immunofluorescence analysis of polytene chromosomes from trans-heterozygotes of RNA Pol II and different mutations of the small RNA pathways show decreased H3K9me2 and mislocalization of Heterochromatin protein-1. A genetic analysis performed on these mutants showed a strong suppression of <it>white-mottled4h </it>position effect variegation. This was further corroborated by a western blot analysis and chromatin immunoprecipitation, which showed decreased H3K9me2 in trans-heterozygote mutants compared to wild type or single heterozygotes. Co-immunoprecipitation performed using <it>Drosophila </it>embryo extracts showed the RNA Pol II largest subunit interacting with Dcr-2 and dAGO1. Co-localization performed on polytene chromosomes showed RNA Pol II and dAGO1 overlapping at some sites.</p> <p>Conclusion</p> <p>Our experiments show a genetic and biochemical interaction between RNA Pol II (largest and second largest subunits) and the small RNA silencing machinery in <it>Drosophila</it>. The interaction has functional aspects in terms of determining H3K9me2 and HP-1 deposition at the chromocentric heterochromatin. Thus, RNA Pol II has an important role in establishing heterochromatin structure in <it>Drosophila</it>.</p

    Correlation of LNCR rasiRNAs Expression with Heterochromatin Formation during Development of the Holocentric Insect Spodoptera frugiperda

    Get PDF
    Repeat-associated small interfering RNAs (rasiRNAs) are derived from various genomic repetitive elements and ensure genomic stability by silencing endogenous transposable elements. Here we describe a novel subset of 46 rasiRNAs named LNCR rasiRNAs due to their homology with one long non-coding RNA (LNCR) of Spodoptera frugiperda. LNCR operates as the intermediate of an unclassified transposable element (TE-LNCR). TE-LNCR is a very invasive transposable element, present in high copy numbers in the S. frugiperda genome. LNCR rasiRNAs are single-stranded RNAs without a prominent nucleotide motif, which are organized in two distinct, strand-specific clusters. The expression of LNCR and LNCR rasiRNAs is developmentally regulated. Formation of heterochromatin in the genomic region where three copies of the TE-LNCR are embedded was followed by chromatin immunoprecipitation (ChIP) and we observed this chromatin undergo dynamic changes during development. In summary, increased LNCR expression in certain developmental stages is followed by the appearance of a variety of LNCR rasiRNAs which appears to correlate with subsequent accumulation of a heterochromatic histone mark and silencing of the genomic region with TE-LNCR. These results support the notion that a repeat-associated small interfering RNA pathway is linked to heterochromatin formation and/or maintenance during development to establish repression of the TE-LNCR transposable element. This study provides insights into the rasiRNA silencing pathway and its role in the formation of fluctuating heterochromatin during the development of one holocentric organism

    HP1 Recruitment in the Absence of Argonaute Proteins in Drosophila

    Get PDF
    Highly repetitive and transposable element rich regions of the genome must be stabilized by the presence of heterochromatin. A direct role for RNA interference in the establishment of heterochromatin has been demonstrated in fission yeast. In metazoans, which possess multiple RNA–silencing pathways that are both functionally distinct and spatially restricted, whether RNA silencing contributes directly to heterochromatin formation is not clear. Previous studies in Drosophila melanogaster have suggested the involvement of both the AGO2-dependent endogenous small interfering RNA (endo-siRNA) as well as Piwi-interacting RNA (piRNA) silencing pathways. In order to determine if these Argonaute genes are required for heterochromatin formation, we utilized transcriptional reporters and chromatin immunoprecipitation of the critical factor Heterochromatin Protein 1 (HP1) to monitor the heterochromatic state of piRNA clusters, which generate both endo-siRNAs and the bulk of piRNAs. Surprisingly, we find that mutation of AGO2 or piwi increases silencing at piRNA clusters corresponding to an increase of HP1 association. Furthermore, loss of piRNA production from a single piRNA cluster results in genome-wide redistribution of HP1 and reduction of silencing at a distant heterochromatic site, suggesting indirect effects on HP1 recruitment. Taken together, these results indicate that heterochromatin forms independently of endo-siRNA and piRNA pathways

    The Epigenetic Trans-Silencing Effect in Drosophila Involves Maternally-Transmitted Small RNAs Whose Production Depends on the piRNA Pathway and HP1

    Get PDF
    BACKGROUND: The study of P transposable element repression in Drosophila melanogaster led to the discovery of the Trans-Silencing Effect (TSE), a homology-dependent repression mechanism by which a P-transgene inserted in subtelomeric heterochromatin (Telomeric Associated Sequences, "TAS") has the capacity to repress in trans, in the female germline, a homologous P-lacZ transgene located in euchromatin. Phenotypic and genetic analysis have shown that TSE exhibits variegation in ovaries, displays a maternal effect as well as epigenetic transmission through meiosis and involves heterochromatin (including HP1) and RNA silencing. PRINCIPAL FINDINGS: Here, we show that mutations in squash and zucchini, which are involved in the piwi-interacting RNA (piRNA) silencing pathway, strongly affect TSE. In addition, we carried out a molecular analysis of TSE and show that silencing is correlated to the accumulation of lacZ small RNAs in ovaries. Finally, we show that the production of these small RNAs is sensitive to mutations affecting squash and zucchini, as well as to the dose of HP1. CONCLUSIONS AND SIGNIFICANCE: Thus, our results indicate that the TSE represents a bona fide piRNA-based repression. In addition, the sensitivity of TSE to HP1 dose suggests that in Drosophila, as previously shown in Schizosaccharomyces pombe, a RNA silencing pathway can depend on heterochromatin components

    Retrotransposon-Induced Heterochromatin Spreading in the Mouse Revealed by Insertional Polymorphisms

    Get PDF
    The “arms race” relationship between transposable elements (TEs) and their host has promoted a series of epigenetic silencing mechanisms directed against TEs. Retrotransposons, a class of TEs, are often located in repressed regions and are thought to induce heterochromatin formation and spreading. However, direct evidence for TE–induced local heterochromatin in mammals is surprisingly scarce. To examine this phenomenon, we chose two mouse embryonic stem (ES) cell lines that possess insertionally polymorphic retrotransposons (IAP, ETn/MusD, and LINE elements) at specific loci in one cell line but not the other. Employing ChIP-seq data for these cell lines, we show that IAP elements robustly induce H3K9me3 and H4K20me3 marks in flanking genomic DNA. In contrast, such heterochromatin is not induced by LINE copies and only by a minority of polymorphic ETn/MusD copies. DNA methylation is independent of the presence of IAP copies, since it is present in flanking regions of both full and empty sites. Finally, such spreading into genes appears to be rare, since the transcriptional start sites of very few genes are less than one Kb from an IAP. However, the B3galtl gene is subject to transcriptional silencing via IAP-induced heterochromatin. Hence, although rare, IAP-induced local heterochromatin spreading into nearby genes may influence expression and, in turn, host fitness

    High-Resolution Electron Microscopy of Semiconductor Heterostructures and Nanostructures

    Get PDF
    This chapter briefly describes the fundamentals of high-resolution electron microscopy techniques. In particular, the Peak Pairs approach for strain mapping with atomic column resolution, and a quantitative procedure to extract atomic column compositional information from Z-contrast high-resolution images are presented. It also reviews the structural, compositional, and strain results obtained by conventional and advanced transmission electron microscopy methods on a number of III–V semiconductor nanostructures and heterostructures

    Compact Josephson φ-junctions

    No full text
    This chapter is devoted to the study of controllable proximity effects in superconductors (S), in terms of both fundamental aspects and applications. As a part of the work, theoretical description was suggested for a number of structures with superconducting electrodes and multiple interlayers with new physics related to the proximity effect and nanoscale φ-junctions. They are Josephson structures with the phase of the ground state φg, 0 < φg < π φ-junctions can be created on the basis of longitudinally oriented normal metal (N) and ferromagnetics (F) layers between superconducting electrodes. Under certain conditions, the amplitude of the first harmonic in the current-phase relation (CPR) is relatively small due to F layer. The coupling across N layer provides negative sign of the second harmonic. To derive quantitative criteria for realization of a φ-junction, we have solved two-dimensional boundary-value problem in the frame of Usadel equations for overlap and ramp geometries of different structures with NF bilayer. This chapter is focused on different geometries of nanoscale φ-structures of the size much less than Josephson penetration depth λJ. At the same time, φ-state cannot be realized in conventional SNS and SFS sandwiches. Proximity effect between N and F layers limits minimal possible size of φ-junction. In the case of smaller junctions, NF bilayer becomes almost homogeneous, φ-state is prohibited, and junction exists in 0- or π-state. The conditions for realization of φ-junctions in ramp-type S–NF–S, overlap-type SFN–FN–NFS, and RTO-type SN–FN–NS geometries are discussed in the chapter. It is shown that RTO-type SN–FN–NS geometry is most suitable for practical realization. It is also shown in this chapter that the parameter range of φ-state existence can be sufficiently broadened. It allows to realize Josephson φ-junctions using up-to-date technology. By varying the temperature, we can slightly shift the region of 0-π transition and, consequently, we can control the mentioned phase of the ground state. Furthermore, sensitivity of the ground state to an electron distribution function permits applications of φ-junctions as small-scale self-biasing single-photon detectors. Moreover, these junctions are controllable and have degenerate ground states +φ and −φ, providing necessary condition for the so-called silent quantum bits
    corecore