109 research outputs found
On supersymmetric quantum mechanics
This paper constitutes a review on N=2 fractional supersymmetric Quantum
Mechanics of order k. The presentation is based on the introduction of a
generalized Weyl-Heisenberg algebra W_k. It is shown how a general Hamiltonian
can be associated with the algebra W_k. This general Hamiltonian covers various
supersymmetrical versions of dynamical systems (Morse system, Poschl-Teller
system, fractional supersymmetric oscillator of order k, etc.). The case of
ordinary supersymmetric Quantum Mechanics corresponds to k=2. A connection
between fractional supersymmetric Quantum Mechanics and ordinary supersymmetric
Quantum Mechanics is briefly described. A realization of the algebra W_k, of
the N=2 supercharges and of the corresponding Hamiltonian is given in terms of
deformed-bosons and k-fermions as well as in terms of differential operators.Comment: Review paper (31 pages) to be published in: Fundamental World of
Quantum Chemistry, A Tribute to the Memory of Per-Olov Lowdin, Volume 3, E.
Brandas and E.S. Kryachko (Eds.), Springer-Verlag, Berlin, 200
Knowledge transfer & exchange through social networks: building foundations for a community of practice within tobacco control
BACKGROUND: Health services and population health innovations advance when knowledge transfer and exchange (KTE) occurs among researchers, practitioners, policy-makers and consumers using high-quality evidence. However, few KTE models have been evaluated in practice. Communities of practice (CoP) – voluntary, self-organizing, and focused groups of individuals and organizations – may provide one option. This paper outlines an approach to lay the foundation for a CoP within the area of Web-assisted tobacco interventions (WATI). The objectives of the study were to provide a data-driven foundation to inform decisions about organizing a CoP within the geographically diverse, multi-disciplinary WATI group using evaluation and social network methodologies. METHODS: A single-group design was employed using a survey of expectations, knowledge, and interpersonal WATI-related relationships administered prior to a meeting of the WATI group followed by a 3-week post-meeting Web survey to assess short-term impact on learning and networking outcomes. RESULTS: Twenty-three of 27 WATI attendees (85%) from diverse disciplinary and practice backgrounds completed the baseline survey, with 21 (91%) of those participants completing the three-week follow-up. Participants had modest expectations of the meeting at baseline. A social network map produced from the data illustrated a centralized, yet sparse network comprising of interdisciplinary teams with little trans-sectoral collaboration. Three-week follow-up survey results showed that participants had made new network connections and had actively engaged in KTE activities with WATI members outside their original network. CONCLUSION: Data illustrating both the shape and size of the WATI network as well as member's interests and commitment to KTE, when shared and used to frame action steps, can positively influence the motivation to collaborate and create communities of practice. Guiding KTE planning through blending data and theory can create more informed transdisciplinary and trans-sectoral collaboration environments
Fully adaptive multiresolution schemes for strongly degenerate parabolic equations with discontinuous flux
A fully adaptive finite volume multiresolution scheme for one-dimensional
strongly degenerate parabolic equations with discontinuous flux is presented.
The numerical scheme is based on a finite volume discretization using the
Engquist--Osher approximation for the flux and explicit time--stepping. An
adaptivemultiresolution scheme with cell averages is then used to speed up CPU
time and meet memory requirements. A particular feature of our scheme is the
storage of the multiresolution representation of the solution in a dynamic
graded tree, for the sake of data compression and to facilitate navigation.
Applications to traffic flow with driver reaction and a clarifier--thickener
model illustrate the efficiency of this method
Comprehensive analysis of temporal alterations in cellular proteome of bacillus subtilis under curcumin treatment
Curcumin is a natural dietary compound with antimicrobial activity against various gram positive and negative bacteria. This study aims to investigate the proteome level alterations in Bacillus subtilis due to curcumin treatment and identification of its molecular/cellular targets to understand the mechanism of action. We have performed a comprehensive proteomic analysis of B. subtilis AH75 strain at different time intervals of curcumin treatment (20, 60 and 120 min after the drug exposure, three replicates) to compare the protein expression profiles using two complementary quantitative proteomic techniques, 2D-DIGE and iTRAQ. To the best of our knowledge, this is the first comprehensive longitudinal investigation describing the effect of curcumin treatment on B. subtilis proteome. The proteomics analysis revealed several interesting targets such UDP-N-acetylglucosamine 1-carboxyvinyltransferase 1, putative septation protein SpoVG and ATP-dependent Clp protease proteolytic subunit. Further, in silico pathway analysis using DAVID and KOBAS has revealed modulation of pathways related to the fatty acid metabolism and cell wall synthesis, which are crucial for cell viability. Our findings revealed that curcumin treatment lead to inhibition of the cell wall and fatty acid synthesis in addition to differential expression of many crucial proteins involved in modulation of bacterial metabolism. Findings obtained from proteomics analysis were further validated using 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) assay for respiratory activity, resazurin assay for metabolic activity and membrane integrity assay by potassium and inorganic phosphate leakage measurement. The gene expression analysis of selected cell wall biosynthesis enzymes has strengthened the proteomics findings and indicated the major effect of curcumin on cell division
Seasonal variations in pore water and sediment geochemistry of littoral lake sediments (Asylum Lake, MI, USA)
BACKGROUND: Seasonal changes in pore water and sediment redox geochemistry have been observed in many near-surface sediments. Such changes have the potential to strongly influence trace metal distribution and thus create seasonal fluctuations in metal mobility and bioavailability. RESULTS: Seasonal trends in pore water and sediment geochemistry are assessed in the upper 50 cm of littoral kettle lake sediments. Pore waters are always redox stratified, with the least compressed redox stratification observed during fall and the most compressed redox stratification observed during summer. A 2-step sequential sediment extraction yields much more Fe in the first step, targeted at amorphous Fe(III) (hydr)oxides (AEF), then in the second step, which targets Fe(II) monosulfides. Fe extracted in the second step is relatively invariant with depth or season. In contrast, AEF decreases with sediment depth, and is seasonally variable, in agreement with changes in redox stratification inferred from pore water profiles. A 5-step Tessier extraction scheme was used to assess metal association with operationally-defined exchangeable, carbonate, iron and manganese oxide (FMO), organic/sulfide and microwave-digestible residual fractions in cores collected during winter and spring. Distribution of metals in these two seasons is similar. Co, As, Cd, and U concentrations approach detection limits. Fe, Cu and Pb are mostly associated with the organics/sulfides fraction. Cr and Zn are mostly associated with FMO. Mn is primarily associated with carbonates, and Co is nearly equally distributed between the FMO and organics/sulfide fractions. CONCLUSION: This study clearly demonstrates that near-surface lake sediment pore water redox stratification and associated solid phase geochemistry vary significantly with season. This has important ramifications for seasonal changes in the bioavailability and mobility of trace elements. Without rate measurements, it is not possible to quantify the contribution of various processes to natural organic matter degradation. However, the pore water and solid phase data suggest that iron reduction and sulfate reduction are the dominant pathways in the upper 50 cm of these sediments
Role of cytoskeletal abnormalities in the neuropathology and pathophysiology of type I lissencephaly
Type I lissencephaly or agyria-pachygyria is a rare developmental disorder which results from a defect of neuronal migration. It is characterized by the absence of gyri and a thickening of the cerebral cortex and can be associated with other brain and visceral anomalies. Since the discovery of the first genetic cause (deletion of chromosome 17p13.3), six additional genes have been found to be responsible for agyria–pachygyria. In this review, we summarize the current knowledge concerning these genetic disorders including clinical, neuropathological and molecular results. Genetic alterations of LIS1, DCX, ARX, TUBA1A, VLDLR, RELN and more recently WDR62 genes cause migrational abnormalities along with more complex and subtle anomalies affecting cell proliferation and differentiation, i.e., neurite outgrowth, axonal pathfinding, axonal transport, connectivity and even myelination. The number and heterogeneity of clinical, neuropathological and radiological defects suggest that type I lissencephaly now includes several forms of cerebral malformations. In vitro experiments and mutant animal studies, along with neuropathological abnormalities in humans are of invaluable interest for the understanding of pathophysiological mechanisms, highlighting the central role of cytoskeletal dynamics required for a proper achievement of cell proliferation, neuronal migration and differentiation
Valorisation to biogas of macroalgal waste streams: a circular approach to bioproducts and bioenergy in Ireland
© 2016 The Author(s) Seaweeds (macroalgae) have been recently attracting more and more interest as a third generation feedstock for bioenergy and biofuels. However, several barriers impede the deployment of competitive seaweed-based energy. The high cost associated to seaweed farming and harvesting, as well as their seasonal availability and biochemical composition currently make macroalgae exploitation too expensive for energy production only. Recent studies have indicated a possible solution to aforementioned challenges may lay in seaweed integrated biorefinery, in which a bioenergy and/or biofuel production step ends an extractions cascade of high-value bioproducts. This results in the double benefit of producing renewable energy while adopting a zero waste approach, as fostered by recent EU societal challenges within the context of the Circular Economy development. This study investigates the biogas potential of residues from six indigenous Irish seaweed species while discussing related issues experienced during fermentation. It was found that Laminaria and Fucus spp. are the most promising seaweed species for biogas production following biorefinery extractions producing 187–195 mL CH4 gVS−1 and about 100 mL CH4 gVS−1 , respectively, exhibiting overall actual yields close to raw un-extracted seaweed
Drawbacks and benefits associated with inter-organizational collaboration along the discovery-development-delivery continuum: a cancer research network case study
- …
