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Abstract
In this paper, we introduce the concept of random C∗-ternary algebras and consider
some properties of them. As an application we approximate a random C∗-ternary
algebra homomorphism in these spaces.
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1 Introduction
Ternary algebraic operations were considered in the th century by several mathemati-
cians, such as Cayley [], who introduced the notion of cubic matrix which, in turn, was
generalized by Kapranov et al. []. The simplest example of such a non-trivial ternary op-
eration is given by the following composition rule:

{a, b, c}ijk =
∑

≤l,m,n≤N

anilbljmcmkn

for each i, j, k = , , . . . , N .
Ternary structures and their generalization, the so-called n-ary structures, raise certain

hopes in view of their applications in physics. Some significant applications are as follows
(see [, ]):

() The algebra of nonions generated by two matrices

⎛

⎜⎝
  
  
  

⎞

⎟⎠ ,

⎛

⎜⎝
  
  ω

ω  

⎞

⎟⎠ ,

where ω = e π i
 , was introduced by Sylvester as a ternary analog of Hamilton’s

quaternions (see []).
() The quark model inspired a particular brand of ternary algebraic systems. The

so-called Nambu mechanics is based on such structures (see []).

2 Random C∗-ternary algebra
In the section, we adopt the usual terminology, notations and conventions of the theory
of random C∗-ternary algebra.
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Throughout this paper, �+ is the space of distribution functions, that is, the space of
all mappings F : R ∪ {–∞,∞} → [, ] such that F is left-continuous and non-decreasing
on R, F() = , and F(+∞) = . D+ is a subset of �+ consisting of all functions F ∈ �+ for
which l–F(+∞) = , where l–f (x) denotes the left limit of the function f at the point x, that
is, l–f (x) = limt→x– f (t). The space �+ is partially ordered by the usual point-wise ordering
of functions, i.e., F ≤ G if and only if F(t) ≤ G(t) for all t in R. For example an element for
�+ is the distribution function εa given by εa(t) = , if t ≤ a and  if t > a.

The maximal element for �+ in this order is the distribution function ε (see [–]).

Definition . ([]) A mapping T : [, ] × [, ] → [, ] is called a continuous triangular
norm (briefly, a continuous t-norm) if T satisfies the following conditions:

(a) T is commutative and associative;
(b) T is continuous;
(c) T(a, ) = a for all a ∈ [, ];
(d) T(a, b) ≤ T(c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [, ].

Typical examples of continuous t-norms are TP(a, b) = ab, TM(a, b) = min(a, b), and
TL(a, b) = max(a + b – , ) (the Lukasiewicz t-norm).

Definition . ([]) A random normed space (briefly, RN-space) is a triple (X,μ, T), where
X is a vector space, T is a continuous t-norm and μ is a mapping from X into D+ such that
the following conditions hold:

(RN) μx(t) = ε(t) for all t >  if and only if x = ;
(RN) μαx(t) = μx( t

|α| ) for all x ∈ X , α �= ;
(RN) μx+y(t + s) ≥ T(μx(t),μy(s)) for all x, y ∈ X and t, s ≥ .

Every normed space (X,‖ · ‖) defines a random normed space (X,μ, TM), where

μx(t) =
t

t + ‖x‖
for all t > , and TM is the minimum t-norm. This space is called the induced random
normed space.

Definition . ([]) A random normed algebra (X,μ, T , T ′) is a random normed space
(X,μ, T) with algebraic structure such that

(RN) μxy(ts) ≥ T ′(μx(t),μy(s)) for all x, y ∈ X and t, s > , in which T ′ is a continuous
t-norm.

Every normed algebra (X,‖ · ‖) defines a random normed algebra (X,μ, TM, TP), where

μx(t) =
t

t + ‖x‖
for all t >  if and only if

‖xy‖ ≤ ‖x‖‖y‖ + s‖y‖ + t‖x‖

for all x, y ∈ X and t, s > . This space is called the induced random normed algebra. For
more properties and examples of the theory of random normed spaces, we refer to [–].
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Definition . Let (U ,μ, T , T ′) be a random Banach algebra. Then an involution on U is
a mapping u → u∗ from U into U which satisfies the following conditions:

() u∗∗ = u for u ∈ U ;
() (αu + βv)∗ = αu∗ + βv∗;
() (uv)∗ = v∗u∗ for u, v ∈ U .
If, in addition, μu∗u(ts) = T ′(μu(t),μu(s)) for all u ∈ U and t, s > , then U is a random

C∗-algebra.

Following the terminology of [], a non-empty set G with a ternary operation [·, ·, ·] :
G × G × G → G is called a ternary groupoid and is denoted by (G, [·, ·, ·]). The ternary
groupoid (G, [·, ·, ·]) is called commutative if [x, x, x] = [xσ (), xσ (), xσ ()] for all x, x, x ∈
G and all permutations σ of {, , }.

If a binary operation ◦ is defined on G such that [x, y, z] = (x ◦ y) ◦ z for all x, y, z ∈ G,
then we say that [·, ·, ·] is derived from ◦. We say that (G, [·, ·, ·]) is a ternary semigroup if
the operation [·, ·, ·] is associative, i.e., if

[
[x, y, z], u, v

]
=

[
x, [y, z, u], v

]
=

[
x, y, [z, u, v]

]

for all x, y, z, u, v ∈ G (see []).
A random C∗-ternary algebra is a random complex Banach space A, equipped with a

ternary product (x, y, z) → [x, y, z] of A into A, which are C-linear in the outer variables,
conjugate C-linear in the middle variable, associative in the sense that

[
x, y, [z, w, v]

]
=

[
x, [w, z, y], v

]
=

[
[x, y, z], w, v

]
,

and satisfies

μ[x,y,z](tsp) ≥ T
(
μx(t),μy(s),μz(p)

)

and

μ[x,x,x]
(
t) ≥ T

(
μx(t),μx(t),μx(t)

)

(see [, ]).
Every random left Hilbert C∗-module is a random C∗-ternary algebra via the ternary

product [x, y, z] := 〈x, y〉z.
If a random C∗-ternary algebra (A, [·, ·, ·]) has the identity, i.e., an element e ∈ A such that

x = [x, e, e] = [e, e, x] for all x ∈ A, then it is routine to verify that A, endowed with x ◦ y :=
[x, e, y] and x∗ := [e, x, e], is a unital C∗-algebra. Conversely, if (A,◦) is a unital C∗-algebra,
then [x, y, z] := x ◦ y∗ ◦ z makes A into a C∗-ternary algebra.

A C-linear mapping H : A → B is called a C∗-ternary algebra homomorphism if

H
(
[x, y, z]

)
=

[
H(x), H(y), H(z)

]

for all x, y, z ∈ A. If, in addition, the mapping H is bijective, then the mapping H : A → B
is called a C∗-ternary algebra isomorphism. A C-linear mapping δ : A → A is called a C∗-
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ternary algebra derivation if

δ
(
[x, y, z]

)
=

[
δ(x), y, z

]
+

[
x, δ(y), z

]
+

[
x, y, δ(z)

]

for all x, y, z ∈ A (see [, ]).
There are some applications, although still hypothetical, in the fractional quantum Hall

effect, the non-standard statistics, supersymmetric theory, and the Yang-Baxter equation
(cf. [, , ]).

Throughout this paper, assume that p, d are non-negative integers with p + d ≥  and A,
B are random C∗-ternary algebras.

Definition . Let (X,μ, T) be an RN-space.
() A sequence {xn} in X is said to be convergent to x in X if, for any ε >  and λ > ,

there exists a positive integer N such that μxn–x(ε) >  – λ whenever n ≥ N .
() A sequence {xn} in X is called a Cauchy sequence if, for any ε >  and λ > , there

exists a positive integer N such that

μxm–xn (ε) >  – λ

whenever n ≥ m ≥ N .
() An RN-space (X,μ, T) is said to be complete if every Cauchy sequence in X is

convergent to a point in X .

3 Approximation of random C∗-ternary algebras homomorphisms
In this section, we approximate random C∗-ternary algebras homomorphisms of a
Cauchy-Jensen additive mapping (see also [–]).

For a given mapping f : A → B, we define

Cμf (x, . . . , xp, y, . . . , yd)

:= f

(∑p
j= μxj


+

d∑

j=

μyj

)
–

p∑

j=

μf (xj) – 
d∑

j=

μf (yj)

for all μ ∈ T := {λ ∈ C : |λ| = } and x, . . . , xp, y, . . . , yd ∈ A.
One can easily show that a mapping f : A → B satisfies

Cμf (x, . . . , xp, y, . . . , yd) = 

for all μ ∈ T and x, . . . , xp, y, . . . , yd ∈ A if and only if

f (μx + λy) = μf (x) + λf (y)

for all μ,λ ∈ T and x, y ∈ A.
We use the following lemma in this paper.

Lemma . ([]) Let f : A → B be an additive mapping such that f (μx) = μf (x) for all
x ∈ A and μ ∈ T. Then the mapping f is C-linear.
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Theorem . Let r, s, and θ be non-negative real numbers such that  < r �= ,  < s �= .
Let ϕ : Ap+d → D+ (d ≥ ) and ψ : A → D+ such that

ϕa(x,...,xp ,y,...,yd)(t) = ϕx,...,xp ,y,...,yd

(
t

ar

)
()

and

ψa(x,y,z)(t) = ψx,y,z

(
t
as

)
()

for all x, . . . , xp, y, . . . , yd, x, y, z ∈ A and a ∈ C. Suppose that f : A → B is a mapping with
f () = , satisfying

μCμf (x,...,xp ,y,...,yd)(t) ≥ ϕx,...,xp ,y,...,yd (t) ()

and

μf ([x,y,z])–[f (x),f (y),f (z)](t) ≥ ψx,y,z(t) ()

for all μ ∈ T, x, . . . , xp, y, . . . , yd, x, y, z ∈ A, and t > . Then there exists a unique C∗-
ternary algebra homomorphism H : A → B such that

μf (x)–H(x)(t) ≥ ϕ p︷︸︸︷
, . . . , ,

d︷︸︸︷
x, . . . , x

(
t

(
d – dr)) ()

for all x ∈ A and t > .

Proof We prove the theorem when  < r <  and  < s < . Similarly, one can prove the
theorem for other cases. Letting μ = , x = · · · = xp = , and y = · · · = yd = x in (), we get

μf (dx)–df (x)(t) ≥ ϕ p︷︸︸︷
, . . . , ,

d︷︸︸︷
x, . . . , x

(t) ()

for all x ∈ A and t > . If we replace x by dnx in (), we get

μ 
dn+ f (dn+x)– 

dn f (dnx)(t) ≥ ϕ p︷︸︸︷
, . . . , ,

d︷︸︸︷
x, . . . , x

(
dtd(–r)n)

for all x ∈ A, all non-negative integers n and t > . Therefore,

μ 
dn+m f (dn+mx)– 

dm f (dmx)(t) ≥ ϕ p︷︸︸︷
, . . . , ,

d︷︸︸︷
x, . . . , x

(
dt∑m+n

k=m d(r–)k

)
()

for all x ∈ A, non-negative integers n, m and t > . From this, it follows that the sequence
{ 

dn f (dnx)} is a Cauchy sequence for all x ∈ A. Since B is complete, the sequence { 
dn f (dnx)}

converges. Thus one can define the mapping H : A → B by

H(x) := lim
n→∞


dn f

(
dnx

)
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for all x ∈ A. Moreover, letting m =  and passing to the limit n → ∞ in (), we get (). It
follows from () that

μ
H(

∑p
j= μxj

 +
∑d

j= μyj)–
∑p

j= μH(xj)–
∑d

j= μH(yj)
(t)

= lim
n→∞μ


dn (f (dn

∑p
j= μxj

 +dn ∑d
j= μyj)–

∑p
j= μf (dnxj)–

∑d
j= μf (dnyj))

(t)

≥ lim
n→∞ϕdn(x,...,xp ,y,...,yd)

(
dnt

)

≥ lim
n→∞ϕx,...,xp ,y,...,yd

(
dn

dnr t
)

= 

for all μ ∈ T, x, . . . , xp, y, . . . , yd ∈ A, and t > . Hence we have

H

(∑p
j= μxj


+

d∑

j=

μyj

)
=

p∑

j=

μH(xj) + 
d∑

j=

μH(yj)

for all μ ∈ T and x, . . . , xp, y, . . . , yd ∈ A and so

H(λx + μy) = λH(x) + μH(y)

for all λ,μ ∈ T and x, y ∈ A. Therefore, by Lemma ., the mapping H : A → B is C-linear.
It follows from () that

μH([x,y,z])–[H(x),H(y),H(z)](t)

= lim
n→∞μ 

dn (f ([dnx,dny,dnz])–[f (dnx),f (dny),f (dnz)])(t)

= lim
n→∞μ(f ([dnx,dny,dnz])–[f (dnx),f (dny),f (dnz)])

(
dnt

)

≥ lim
n→∞ψdnx,dny,dnz

(
dnt

)

≥ lim
n→∞ψx,y,z

(
dn

dns

)
= 

for all x, y, z ∈ A and t >  and so

H
(
[x, y, z]

)
=

[
H(x), H(y), H(z)

]

for all x, y, z ∈ A.
Now, let T : A → B be another generalized Cauchy-Jensen additive mapping satisfying

(). Then we have

μH(x)–T(x)(t) = lim
n→∞μ 

dn (f (dnx)–T(dnx))(t)

= lim
n→∞μf (dnx)–T(dnx)

(
dnt

)

≥ lim
n→∞ϕ p︷︸︸︷

, . . . , ,

d︷ ︸︸ ︷
dnx, . . . , dnx

(
tdn(d – dr))



Cho et al. Journal of Inequalities and Applications  (2015) 2015:26 Page 7 of 9

≥ lim
n→∞ϕ p︷︸︸︷

, . . . , ,
d︷︸︸︷

x, . . . , x

(
tdn(d – dr)

dnr

)

= 

for all x ∈ A and t > . So we can conclude that H(x) = T(x) for all x ∈ A. This proves the
uniqueness of H . Thus the mapping H : A → B is a unique C∗-ternary algebra homomor-
phism satisfying (). This completes the proof. �

Theorem . Let r < , s < , θ be non-negative real numbers and let f : A → B be a map-
ping satisfying (), (), () and (). If there exist a real number λ >  ( < λ < ) and an
element x ∈ A such that

lim
n→∞


λn f

(
λnx

)
= e′

(
lim

n→∞λnf
(

x

λn

)
= e′

)
,

then the mapping f : A → B is a C∗-ternary algebra homomorphism.

Proof By using the proof of Theorem ., there exists a unique C∗-ternary algebra homo-
morphism H : A → B satisfying (). Now,

H(x) = lim
n→∞


λn f

(
λnx

) (
H(x) = lim

n→∞λnf
(

x
λn

))
()

for all x ∈ A and all real numbers λ >  ( < λ < ). Therefore, by the assumption, we get
that H(x) = e′. Let λ >  and limn→∞ 

λn f (λnx) = e′. It follows from () and () that

μ[H(x),H(y),H(z)]–[H(x),H(y),f (z)](t)

= μH[x,y,z]–[H(x),H(y),f (z)](t)

= lim
n→∞μ 

λn (f ([λnx,λny,z])–[f (λnx),f (λny),f (z)])(t)

= lim
n→∞μf ([λnx,λny,z])–[f (λnx),f (λny),f (z)]

(
λnt

)

≥ lim
n→∞ψλx ,λy ,λz

(
λnt

)

= ψx,y,z

(
λn

λns t
)

= 

for all x ∈ A and t >  and so

[
H(x), H(y), H(z)

]
=

[
H(x), H(y), f (z)

]

for all x, y, z ∈ A. Letting x = y = x in the last equality, we get f (z) = H(z) for all z ∈ A.
Similarly, one can show that H(x) = f (x) for all x ∈ A when  < λ <  and limn→∞ λnf ( x

λn ) =
e′. Therefore, the mapping f : A → B is a C∗-ternary algebra homomorphism. This com-
pletes the proof. �

Theorem . Let r > , s > , θ be non-negative real numbers and let f : A → B be a map-
ping satisfying () and (). If there exists a real number  < λ <  (λ > ) and an element
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x ∈ A such that

lim
n→∞


λn f

(
λnx

)
= e′

(
lim

n→∞λnf
(

x

λn

)
= e′

)
,

then the mapping f : A → B is a C∗-ternary algebra homomorphism.

Proof The proof is similar to the proof of Theorem . and we omit it. �
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