7 research outputs found

    Importance of salt fingering for new nitrogen supply in the oligotrophic ocean.

    Get PDF
    The input of new nitrogen into the euphotic zone constrains the export of organic carbon to the deep ocean and thereby the biologically mediated long-term CO2 exchange between the ocean and atmosphere. In low-latitude open-ocean regions, turbulence-driven nitrate diffusion from the ocean’s interior and biological fixation of atmospheric N2 are the main sources of new nitrogen for phytoplankton productivity. With measurements across the tropical and subtropical Atlantic, Pacific and Indian oceans, we show that nitrate diffusion (171±190 mmolm 2 d 1) dominates over N2 fixation (9.0±9.4 mmolm 2 d 1) at the time of sampling. Nitrate diffusion mediated by salt fingers is responsible for ca. 20% of the new nitrogen supply in several provinces of the Atlantic and Indian Oceans. Our results indicate that salt finger diffusion should be considered in present and future ocean nitrogen budgets, as it could supply globally 0.23–1.00 TmolNyr 1 to the euphotic zone.MALASPINA (CSD2008-00077)Versión del editor10,015

    Atlantic origin of observed and modelled freshwater anomalies in the Nordic Seas

    No full text
    Between 1965 and 1990, the waters of the Nordic Seas and the subpolar basins of the North Atlantic Ocean freshened substantially1. The Arctic Ocean also became less saline over this time, as a consequence of increasing runoff1, 2, 3, 4, but it is not clear whether flow from the Arctic Ocean was the main source of the Nordic Seas salinity anomaly. As a region of deep-water formation, the Nordic Seas are central to the Atlantic meridional overturning circulation, but this process is inhibited if the surface salinity is too low2. Here we use the instrumental record of Nordic Seas hydrography, along with a global ocean–sea-ice model hindcast simulation, to identify the sources and magnitude of freshwater that has accumulated in the Nordic Seas since 1950. We find that the freshwater anomalies within the Nordic Seas can mostly be explained by less salt entering the southern part of the basin with the relatively saline Atlantic inflow, with seemingly little contribution from the Arctic Ocean. We conclude that hydrographic changes in the Nordic Seas are primarily related to changes in the Atlantic Ocean. We infer that if the Atlantic inflow and Nordic Seas both freshen similarly, this would render the Atlantic meridional overturning circulation relatively insensitive to Nordic Seas freshwater content

    Testing models of reciprocal relations between social influence and integration in STEM across the college years

    No full text
    corecore