72 research outputs found

    Supporting mental health, wellbeing and study skills in Higher Education:an online intervention system

    Get PDF
    Abstract Background Dealing with psychological and study skill difficulties can present a challenge for both Higher Education (HE) students, who suffer from them, but also for HE Institutions and their support services. Alternative means of support, such as online interventions, have been identified as cost-effective and efficient ways to provide inclusive support to HE students, removing many of the barriers to help-seeking as well as promoting mental health and wellbeing. Case presentation The current case study initially outlines the rigorous approach in the development of one such online intervention system, MePlusMe. It further highlights key features that constitute innovative delivery of evidence-based psychological and educational practice in the areas of mental health, promotion of wellbeing, support of mood and everyday functioning, and study-skills enhancement. Conclusions This case study aims to present the innovative features of MePlusMe in relation to current needs and evidence-basis. Finally, it presents future directions in the evaluation, assessment, and evidence of the fitness-for-purpose process

    Involvement of bcl-2 and p21waf1 proteins in response of human breast cancer cell clones to Tomudex

    Get PDF
    Mechanisms of resistance to Tomudex include increased thymidylate synthase activity, as well as reduced intracellular drug uptake and polyglutamation. However, little is known about other mechanisms of resistance, such as a possible protection against Tomudex-induced apoptosis mediated by bcl-2. We transfected the MDA-MB-435 human breast cancer cell line, which is characterized by a mutated p53 gene, with cDNA of the bcl-2 gene and generated two clones (MDA-bcl4 and MDA-bcl7) characterized by bcl-2 expression twofold and fourfold that observed in the control cell clone (MDAneo). A concomitant overexpression of p21wafl was also detected in the MDA-bcl7 clone. The MDA-bcl4 clone was three times more resistant to a 24-h Tomudex exposure than the MDAneo clone, whereas the MDA-bcl7 clone was as sensitive to Tomudex as the control cell clone. A lower sensitivity of the MDA-bcl4 clone than MDAneo and MDA-bcl7 clones to 5-fluorouracil and gemcitabine was also observed. No significant difference was noted in the susceptibility of clones to fludarabine and methothrexate. Basal levels of thymidylate synthase activity were superimposable in the three clones. Tomudex induced a marked accumulation of cells in the S phase in all the clones. However, an apoptotic hypodiploid DNA peak and the characteristic nuclear morphology of apoptosis were observed only in the MDA-bcl7 clone after exposure to Tomudex. No difference in the treatment-induced modulation of proteins involved in cell cycle progression (cyclin A, cdk2, pRB, E2F-1) and apoptosis (bcl-2, bax) was observed in the three clones. The only exception was that the expression of p21wafl in the MDA-bcl4 clone was inducible at a Tomudex concentration much higher than that required to induce the protein in the other clones. Overall, the results indicate that bcl-2 and p21wafl proteins concur in determining the cellular profile of sensitivity/resistance to Tomudex. © 1999 Cancer Research Campaig

    Posthospitalization COVID-19 cognitive deficits at 1 year are global and associated with elevated brain injury markers and gray matter volume reduction

    Get PDF
    \ua9 The Author(s) 2024.The spectrum, pathophysiology and recovery trajectory of persistent post-COVID-19 cognitive deficits are unknown, limiting our ability to develop prevention and treatment strategies. We report the 1-year cognitive, serum biomarker and neuroimaging findings from a prospective, national study of cognition in 351 COVID-19 patients who required hospitalization, compared with 2,927 normative matched controls. Cognitive deficits were global, associated with elevated brain injury markers and reduced anterior cingulate cortex volume 1 year after COVID-19. Severity of the initial infective insult, postacute psychiatric symptoms and a history of encephalopathy were associated with the greatest deficits. There was strong concordance between subjective and objective cognitive deficits. Longitudinal follow-up in 106 patients demonstrated a trend toward recovery. Together, these findings support the hypothesis that brain injury in moderate to severe COVID-19 may be immune-mediated, and should guide the development of therapeutic strategies

    CpG binding protein (CFP1) occupies open chromatin regions of active genes, including enhancers and non-CpG islands

    Get PDF
    Additional file 1. Fig. S1: Analysis of CFP1 binding at individual loci and CpG islands (CGIs). (A-B) Analysis of CFP1 binding at the human α-globin locus in expressing and non-expressing cells. (A) Real-Time PCR analysis of immunoprecipitated chromatin using CFP1 antibody in human erythroblasts (red) and B-lymphocytes (blue). The y-axis represents enrichment over the input DNA, normalised to a control sequence in the human 18S gene. The x-axis represents the positions of Taqman probes used. The coding sequence is represented by the three exons (Promoter/Ex1, Ex2, Ex3) of the α-globin genes. 218 and hBact denote control sequences adjacent to the CpG islands of the human LUC7L (218) and ACTB promoters. Error bars correspond to ± 1 SD from at least two independent ChIPs. (B) Real-Time PCR analysis of immunoprecipitated chromatin using the CFP1 antibody indicated in humanised erythroblasts (normal, +MCS-R2 (left) and mutant, MCS-R2 (right). The y-axis represents enrichment over the input DNA, normalised to a control sequence in the mouse GAPDH gene. CpG Act denotes additional control sequence at the CGI of the mouse ACTB gene. The amplicons highlighted in red represent deleted regions in the humanised mice, for which no PCR signal is observed. Error bars correspond to ± 1 SD from at least two independent ChIPs. (C) CFP1 ChIP signal intensity in the top 200 peaks, by antibody and by cell type. Abcam, ab56035 antibody. Roeder, main antibody used in this study. (D) Analysis of CGI (green) and non-CGI (blue) transcription start sites (1-kb window, centred on TSS). Gene symbols shown with CpG content of individual loci in parentheses. Greek letters represent individual globin genes. Fig. S2: Peak overlaps of CFP1 and marks of active and repressed chromatin in transcription start sites (TSSs). Peaks were detected by MACS2. Venn diagrams show that CFP1 peaks within 1-kb of TSSs are strongly associated with H3K4me3 histone mark and poorly associated with H3K27me3 repressive histone mark. Cell types are (A) ERY and (B) EBV. Public data sets: * NCBI GEO GSE36985, ** NCBI GEO GSE50893. Fig. S3: UCSC tracks showing CFP1 and other ChIP signals in gene loci in erythroblasts (ERY) and EBV-transformed B-lymphoblasts (EBV). Hg38 coordinates for multiple genes, CpG islands (CGI, green boxes), and putative regulatory regions (blue boxes) are shown. CFP1 signals are shown in dark reds, inputs in grey, histone H3 signals in blues and open chromatin marks in greens. All ChIP pileups are scaled to 1x coverage genome-wide and shown in a range 0–50, except CFP1 (Roeder) is shown with extended range and H3K27me3 graphs scaled by 2x. (A) Tissue-specific binding of CFP1 to CGI promoters of tissue-specifically expressed genes. Left (chr16), CGI promoters of active genes in alpha globin locus are CFP1-bound in ERY, and unbound in EBV. Flanking regions are included, with known tissue-specific enhancers. Right (chr6), first seven exons of IRF4 locus, active in EBV and inactive in ERY, with CFP1 binding to CGI promoter in EBV only. (B) CGI promoters of housekeeping genes are CFP1 bound and unmarked by H3K27me3. Left (chr7), ACTB locus. Right (chr16), LUC7L locus. (C) CGI promoter of RHBDF1 locus (chr16) has H3K27me3 mark and the absence of CFP1 binding in both ERY and EBV. Fig. S4: Western blot analysis of CGBP (CFP1) expression in mouse and human erythroid and human lymphoid cell types. Whole cell extracts (20 µg) were loaded in each lane (1) mouse ES, (2) U-MEL, (3) I-MEL, (4) mouse primary erythroblasts and (5) human primary T lymphocytes and (6) human primary erythroblasts and separated on a 10% SDS-polyacrylamide gel. CFP1 antibody was used at a 1:1000 dilution. Fig. S5: Similar cell type-specific CFP1 read depth at CGI TSS of HBA1 gene and non-CGI TSS of HBB gene. Upper two tracks use the main antibody, and second two tracks use the commercial antibody. Coordinates are from the hg38 human genome build. Read depths are averaged in 50 bp bins and normalised to 1x genome-wide coverage. Blue boxes, known regulatory regions; green box, CGI. Fig. S6: Distribution of TrxG components in erythroid cells. Green indicates CGI and blue indicates other putative regulatory regions. All loci transcribed right to left. Pileups are shown scaled to 1x genome coverage, with full scale 0–50x depth. (A) Housekeeping genes ACTB, left (chr7), and LUC7L, right (chr16). (B) β-globin locus (chr11), (C) Non-expressed RHBDF1 locus (chr16). Fig. S7: Overlap of TrxG subunit ChIP peaks in a high-confidence subset of regions. SET1A complexes are represented by CFP1-SET1A colocalisation. MLL1/2 complexes are represented by Menin, and MLL3/4 complexes are represented by UTX, respectively. HCF1 is found in SET1A/B and MLL1/2 complexes, and RBBP5 is a member of SET1A/B and MLL1/2/3/4 complexes. Red outline (4220 peaks) shows strong colocalisation of Menin and CFP1-SET1A, accounting for the vast majority (99.5%) of 4242 CFP1-SET1A and half (50.0%) of 8432 Menin peak regions. Majority (87.0%, 2089/2400 peaks) of HCF1 (blue region) is accounted for by approximately half (49.5%, 2089/4220) of regions of Menin-SET1A-CFP1 colocalisation. Regions where either SET1A-CFP1 or Menin or both are colocalised with HCF1 (blue dashed line) accounts for nearly all (99.6%, 2390/2400) HCF1 regions, suggesting that HCF1 bound to DNA is primarily present as part of SET1A/B or MLL1/2 complexes. Fig. S8: Chromatin accessibility in TSSs and enhancers in erythroid cells as measured by ATAC-seq and DNase-seq. 1x-normalised, input-subtracted signals from ATAC-seq and DNase were averaged in a 2-kb window about TSSs and putative enhancers. Z-score transformed values for ATAC-seq and DNase-seq at a given locus were averaged. Fig. S9: Relationship of CFP1 signal to three predictive factors in top-decile open chromatin regions. A linear combination of CpG density and SET1A and H3K4me3 ChIP signals explains a substantial fraction of variation in CFP1 ChIP signal. Table S1: Bias of CFP1 for CGI TSSs in cell types and gene classes. Table S2: Bias of CFP1 for housekeeping gene TSSs. Table S3: Motifs associated with CFP1 peaks. Table S4: Dependence of CFP1 ChIP signal in erythroid cells on covariates putatively associated with its binding. Table S5: Analysis of variance of CFP1 signal in top-decile open chromatin regions surrounding TSSs and putative enhancers
    corecore