2,056 research outputs found
A review of the mosquito species (Diptera: Culicidae) of Bangladesh
© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The attached file is the published version of the article
Numerical computation of electric field and potential along silicone rubber insulators under contaminated and dry band conditions
Multi-Layer Cyber-Physical Security and Resilience for Smart Grid
The smart grid is a large-scale complex system that integrates communication
technologies with the physical layer operation of the energy systems. Security
and resilience mechanisms by design are important to provide guarantee
operations for the system. This chapter provides a layered perspective of the
smart grid security and discusses game and decision theory as a tool to model
the interactions among system components and the interaction between attackers
and the system. We discuss game-theoretic applications and challenges in the
design of cross-layer robust and resilient controller, secure network routing
protocol at the data communication and networking layers, and the challenges of
the information security at the management layer of the grid. The chapter will
discuss the future directions of using game-theoretic tools in addressing
multi-layer security issues in the smart grid.Comment: 16 page
Decoherence induced deformation of the ground state in adiabatic quantum computation
Despite more than a decade of research on adiabatic quantum computation
(AQC), its decoherence properties are still poorly understood. Many theoretical
works have suggested that AQC is more robust against decoherence, but a
quantitative relation between its performance and the qubits' coherence
properties, such as decoherence time, is still lacking. While the thermal
excitations are known to be important sources of errors, they are predominantly
dependent on temperature but rather insensitive to the qubits' coherence. Less
understood is the role of virtual excitations, which can also reduce the ground
state probability even at zero temperature. Here, we introduce normalized
ground state fidelity as a measure of the decoherence-induced deformation of
the ground state due to virtual transitions. We calculate the normalized
fidelity perturbatively at finite temperatures and discuss its relation to the
qubits' relaxation and dephasing times, as well as its projected scaling
properties.Comment: 10 pages, 3 figure
Relationship between Anthropometric Indices and Dyslipidemia among Sudanese Women in Khartoum State
Background: Several studies were undertaken in both developed and developing countries to investigate the relationship between lipid abnormalities and anthropometric indices. In Sudan, however, no data are available, particularly among Sudanese women.Objectives: This study aimed at investigating the relationship between dyslipidemia and anthropometric indices among a group of Sudanese women living in Khartoum state.Methods: A total sample of two hundred and four women aged 25 to 69 years old participated in this study. Anthropometric measures and blood chemistries were obtained. The relationship between obesity indices and lipid profile were investigated.Results: Body Mass Index (BMI) was strongly correlated with cholesterol (TC) (R=.434 P=.000), low-density lipoprotein (R=.423, P=.000), triglycerides (R=.258, P=.000), TC: HDL (R=.455, P=.000) and high-density lipoprotein (R=-.383, P=.000). Regarding the relationship between central obesity and lipid profile, significant correlation was detected between waist circumference and total cholesterol. Waist to height ratio was also significantly correlated with total cholesterol, lowdensitylipoprotein, triglycerides, high-density lipoprotein, and TC: HDL, while no correlation was detected between waist to hip ratio, height and lipid profile.BMI was the strongest predictor and important indicator of dyslipidemia among Sudanese women even after inclusion of all the variables in the study. Regarding age, except for triglycerides age was strongly associated with dyslipidemia among Sudanese women (p <0.05).Conclusions: The study concluded that anthropometric measurement (BMI, WC, WHtR) were strongly correlated with dyslipidemia among Sudanese women, while no correlation was found between WHpR and lipid abnormalities
Determining Material Response for Polyvinyl Butyral (PVB) in Blast Loading Situations
Protecting structures from the effect of blast loads requires the careful design of all building components. In this context, the mechanical properties of Polyvinyl Butyral (PVB) are of interest to designers as the membrane behaviour will affect the performance of laminated glass glazing when loaded by explosion pressure waves. This polymer behaves in a complex manner and is difficult to model over the wide range of strain rates relevant to blast analysis. In this study, data from experimental tests conducted at strain rates from 0.01 s−1 to 400 s−1 were used to develop material models accounting for the rate dependency of the material. Firstly, two models were derived assuming Prony series formulations. A reduced polynomial spring and a spring derived from the model proposed by Hoo Fatt and Ouyang were used. Two fits were produced for each of these models, one for low rate cases, up to 8 s−1, and one for high rate cases, from 20 s−1. Afterwards, a single model representing all rates was produced using a finite deformation viscoelastic model. This assumed two hyperelastic springs in parallel, one of which was in series with a non-linear damper. The results were compared with the experimental results, assessing the quality of the fits in the strain range of interest for blast loading situations. This should provide designers with the information to choose between the available models depending on their design needs
Inferring stabilizing mutations from protein phylogenies : application to influenza hemagglutinin
One selection pressure shaping sequence evolution is the requirement that a protein fold with sufficient stability to perform its biological functions. We present a conceptual framework that explains how this requirement causes the probability that a particular amino acid mutation is fixed during evolution to depend on its effect on protein stability. We mathematically formalize this framework to develop a Bayesian approach for inferring the stability effects of individual mutations from homologous protein sequences of known phylogeny. This approach is able to predict published experimentally measured mutational stability effects (ΔΔG values) with an accuracy that exceeds both a state-of-the-art physicochemical modeling program and the sequence-based consensus approach. As a further test, we use our phylogenetic inference approach to predict stabilizing mutations to influenza hemagglutinin. We introduce these mutations into a temperature-sensitive influenza virus with a defect in its hemagglutinin gene and experimentally demonstrate that some of the mutations allow the virus to grow at higher temperatures. Our work therefore describes a powerful new approach for predicting stabilizing mutations that can be successfully applied even to large, complex proteins such as hemagglutinin. This approach also makes a mathematical link between phylogenetics and experimentally measurable protein properties, potentially paving the way for more accurate analyses of molecular evolution
A new primary dental care service compared with standard care for child and family to reduce the re-occurrence of childhood dental caries (Dental RECUR): study protocol for a randomised controlled trial
Background: In England and Scotland, dental extraction is the single highest cause of planned admission to the hospital for children under 11 years. Traditional dental services have had limited success in reducing this disease burden. Interventions based on motivational interviewing have been shown to impact positively dental health behaviours and could facilitate the prevention of re-occurrence of dental caries in this high-risk population. The objective of the study is to evaluate whether a new, dental nurse-led service, delivered using a brief negotiated interview based on motivational interviewing, is a more cost-effective service than treatment as usual, in reducing the re-occurrence of dental decay in young children with previous dental extractions. Methods/Design: This 2-year, two-arm, multicentre, randomised controlled trial will include 224 child participants, initially aged 5 to 7 years, who are scheduled to have one or more primary teeth extracted for dental caries under general anaesthesia (GA), relative analgesia (RA: inhalation sedation) or local anaesthesia (LA). The trial will be conducted in University Dental Hospitals, Secondary Care Centres or other providers of dental extraction services across the United Kingdom. The intervention will include a brief negotiated interview (based on the principles of motivational interviewing) delivered between enrolment and 6 weeks post-extraction, followed by directed prevention in primary dental care. Participants will be followed up for 2 years. The main outcome measure will be the dental caries experienced by 2 years post-enrolment at the level of dentine involvement on any tooth in either dentition, which had been caries-free at the baseline assessment. Discussion: The participants are a hard-to-reach group in which secondary prevention is a challenge. Lack of engagement with dental care makes the children and their families scheduled for extraction particularly difficult to recruit to an RCT. Variations in service delivery between sites have also added to the challenges in implementing the Dental RECUR protocol during the recruitment phase. Trial registration: ISRCTN24958829 (date of registration: 27 September 2013), Current protocol version: 5.0
The predictive and prognostic potential of plasma telomerase reverse transcriptase (TERT) RNA in rectal cancer patients
Background: Preoperative chemoradiotherapy (CRT) followed by surgery is the standard care for locally advanced rectal cancer,
but tumour response to CRT and disease outcome are variable. The current study aimed to investigate the effectiveness of plasma
telomerase reverse transcriptase (TERT) levels in predicting tumour response and clinical outcome.
Methods: 176 rectal cancer patients were included. Plasma samples were collected at baseline (before CRT\ubcT0), 2 weeks after
CRT was initiated (T1), post-CRT and before surgery (T2), and 4\u20138 months after surgery (T3) time points. Plasma TERT mRNA levels
and total cell-free RNA were determined using real-time PCR.
Results: Plasma levels of TERT were significantly lower at T2 (Po0.0001) in responders than in non-responders. Post-CRT TERT
levels and the differences between pre- and post-CRT TERT levels independently predicted tumour response, and the prediction
model had an area under curve of 0.80 (95% confidence interval (CI) 0.73\u20130.87). Multiple analysis demonstrated that patients with
detectable TERT levels at T2 and T3 time points had a risk of disease progression 2.13 (95% CI 1.10\u20134.11)-fold and 4.55 (95% CI
1.48\u201313.95)-fold higher, respectively, than those with undetectable plasma TERT levels.
Conclusions: Plasma TERT levels are independent markers of tumour response and are prognostic of disease progression in rectal
cancer patients who undergo neoadjuvant therapy
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
- …
