29 research outputs found

    Is procrastination a vulnerability factor for hypertension and cardiovascular disease? Testing an extension of the procrastination–health model

    Get PDF
    Personality is an important epidemiological factor for understanding health outcomes. This study investigated the associations of trait procrastination with hypertension and cardiovascular disease (HT/CVD) and maladaptive coping by testing an extension of the procrastination–health model among individuals with and without HT/CVD. Individuals with self-reported HT/CVD (N = 182) and healthy controls (N = 564), from a community sample, completed an online survey including measures of personality, coping, and health outcomes. Logistic regression analysis controlling for demographic and higher order personality factors found that older age, lower education level and higher procrastination scores were associated with HT/CVD. Moderated mediation analyses with bootstrapping revealed that procrastination was more strongly associated with maladaptive coping behaviours in participants with HT/CVD than the healthy controls, and the indirect effects on stress through maladaptive coping were larger for the HT/CVD sample. Results suggest procrastination is a vulnerability factor for poor adjustment to and management of HT/CVD

    Controlling human striatal cognitive function via the frontal cortex.

    No full text
    Cognitive flexibility is known to depend on the striatum. However, the striatum does not act in isolation to bias cognitive flexibility. In particular, cognitive flexibility also implicates the frontal cortex. Here we tested the hypothesis that the human frontal cortex controls cognitive flexibility by regulating striatal function via topographically specific frontostriatal connections. To this end, we exploited a repetitive transcranial magnetic stimulation (TMS) protocol over frontal cortex that is known to increase dopamine release in the striatum. This intervention was combined with functional magnetic resonance imaging to determine the functional and topographic specificity of its consequences at the whole brain level. Participants were scanned both before and after off-line TMS while performing a cognitive switching task that is known to depend on a specific striatal substructure, the putamen. Frontal stimulation perturbed task-specific functional signals in the putamen, while reducing fronto-striatal functional connectivity. There were no such effects of TMS over the medial parietal cortex. These data strengthen the hypothesis that cognitive flexibility involves topographic frontal control of striatal function

    Anatomical connection strength predicts dopaminergic drug effects on fronto-striatal function

    Get PDF
    Item does not contain fulltextRATIONALE: The neurotransmitter dopamine plays a key role in cognitive functions that are associated with fronto-striatal circuitry and has been implicated in many neuropsychiatric disorders. However, there is a large variability in the direction and extent of dopaminergic drug effects across individuals. OBJECTIVES: We investigated whether individual differences in dopaminergic drug effects on human fronto-striatal functioning are associated with individual differences in white matter tracts. METHODS: The effects of the dopamine receptor agonist bromocriptine were assessed using functional magnetic resonance imaging in 22 healthy volunteers in a placebo-controlled, double-blind, within-subject design. Human psychopharmacology and functional neuroimaging were combined with functional connectivity analyses and structural connectivity analyses to establish a link between dopaminergic drug effects on fronto-striatal function and fronto-striatal anatomy. RESULTS: We demonstrate that bromocriptine alters functional signals associated with attention switching in the basal ganglia. Crucially, individual differences in the drug's effect on these signals could be predicted from individual differences in fronto-striato-thalamic white matter tracts, as indexed by diffusion tensor imaging. Anatomical fronto-striatal connectivity also predicted drug effects on switch-related functional connectivity between the basal ganglia and the prefrontal cortex. CONCLUSIONS: These data reinforce the link between dopamine, cognition and the basal ganglia and have implications for the individual tailoring of dopaminergic drug therapy based on anatomical fronto-striatal connection strength

    Enhancement of multitasking performance and neural oscillations by transcranial alternating current stimulation

    Get PDF
    Multitasking is associated with the generation of stimulus-locked theta (4-7 Hz) oscillations arising from prefrontal cortex (PFC). Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that influences endogenous brain oscillations. Here, we investigate whether applying alternating current stimulation within the theta frequency band would affect multitasking performance, and explore tACS effects on neurophysiological measures. Brief runs of bilateral PFC theta-tACS were applied while participants were engaged in a multitasking paradigm accompanied by electroencephalography (EEG) data collection. Unlike an active control group, a tACS stimulation group showed enhancement of multitasking performance after a 90-minute session (F1,35 = 6.63, p = 0.01, ηp2 = 0.16; effect size = 0.96), coupled with significant modulation of posterior beta (13-30 Hz) activities (F1,32 = 7.66, p = 0.009, ηp2 = 0.19; effect size = 0.96). Across participant regression analyses indicated that those participants with greater increases in frontal theta, alpha and beta oscillations exhibited greater multitasking performance improvements. These results indicate frontal theta-tACS generates benefits on multitasking performance accompanied by widespread neuronal oscillatory changes, and suggests that future tACS studies with extended treatments are worth exploring as promising tools for cognitive enhancement

    Human cognitive flexibility depends on dopamine D2 receptor signaling

    Get PDF
    Item does not contain fulltextRATIONALE: Accumulating evidence indicates that the cognitive effects of dopamine depend on the subtype of dopamine receptor that is activated. In particular, recent work with animals as well as current theorizing has suggested that cognitive flexibility depends on dopamine D2 receptor signaling. However, there is no evidence for similar mechanisms in humans. OBJECTIVES: We aim to demonstrate that optimal dopamine D2 receptor signaling is critical for human cognitive flexibility. METHODS: To this end, a pharmacological pretreatment design was employed. This enabled us to investigate whether effects of the dopamine receptor agonist bromocriptine on task-set switching were abolished by pretreatment with the D2 receptor antagonist sulpiride. To account for individual (genetic) differences in baseline levels of dopamine, we made use of a common variable number of tandem repeat (VNTR) polymorphism in the 3'-untranslated region of the dopamine transporter gene, DAT1. RESULTS: Bromocriptine improved cognitive flexibility relative to placebo, but only in subjects with genetically determined low levels of dopamine (n = 27). This beneficial effect of bromocriptine on cognitive flexibility was blocked by pretreatment with the selective dopamine D2 receptor antagonist sulpiride (n = 14). CONCLUSIONS: These results provide strong evidence in favor of the hypothesis that human cognitive flexibility implicates dopamine D2 receptor signaling
    corecore