29 research outputs found

    Characterization of the effects of cross-linking of macrophage CD44 associated with increased phagocytosis of apoptotic PMN

    Get PDF
    Control of macrophage capacity for apoptotic cell clearance by soluble mediators such as cytokines, prostaglandins and lipoxins, serum proteins, and glucocorticoids may critically determine the rate at which inflammation resolves. Previous studies suggested that macrophage capacity for clearance of apoptotic neutrophils was profoundly altered following binding of CD44 antibodies. We have used a number of different approaches to further define the mechanism by which CD44 rapidly and specifically augment phagocytosis of apoptotic neutrophils. Use of Fab ’ fragments unequivocally demonstrated a requirement for cross-linking of macrophage surface CD44. The molecular mechanism of CD44-augmented phagocytosis was shown to be opsonin-independent and to be distinct from the Mer/protein S pathway induced by glucocorticoids and was not functional for clearance of apoptotic eosinophils. CD44-cross-linking also altered macrophage migration and induced cytoskeletal re-organisation together with phosphorylation of paxillin and activation of Rac2. Investigation of signal transduction pathways that might be critical for CD44 augmentation of phagocytosis revealed that Ca 2+ signalling, PI-3 kinase pathways and altered cAMP signalling were not involved, but did implicate a key role for tyrosine phosphorylation events. Finally, although CD44 antibodies were able to augment phagocytosis of apoptotic neutrophils by murine peritoneal and bone marrow-derived macrophages, we did not observe a difference in the clearance of neutrophils following induction of peritonitis with thioglycollate in CD44-deficient animals. Together, these data demonstrate that CD4

    Nano-motion Dynamics are Determined by Surface-Tethered Selectin Mechanokinetics and Bond Formation

    Get PDF
    The interaction of proteins at cellular interfaces is critical for many biological processes, from intercellular signaling to cell adhesion. For example, the selectin family of adhesion receptors plays a critical role in trafficking during inflammation and immunosurveillance. Quantitative measurements of binding rates between surface-constrained proteins elicit insight into how molecular structural details and post-translational modifications contribute to function. However, nano-scale transport effects can obfuscate measurements in experimental assays. We constructed a biophysical simulation of the motion of a rigid microsphere coated with biomolecular adhesion receptors in shearing flow undergoing thermal motion. The simulation enabled in silico investigation of the effects of kinetic force dependence, molecular deformation, grouping adhesion receptors into clusters, surface-constrained bond formation, and nano-scale vertical transport on outputs that directly map to observable motions. Simulations recreated the jerky, discrete stop-and-go motions observed in P-selectin/PSGL-1 microbead assays with physiologic ligand densities. Motion statistics tied detailed simulated motion data to experimentally reported quantities. New deductions about biomolecular function for P-selectin/PSGL-1 interactions were made. Distributing adhesive forces among P-selectin/PSGL-1 molecules closely grouped in clusters was necessary to achieve bond lifetimes observed in microbead assays. Initial, capturing bond formation effectively occurred across the entire molecular contour length. However, subsequent rebinding events were enhanced by the reduced separation distance following the initial capture. The result demonstrates that vertical transport can contribute to an enhancement in the apparent bond formation rate. A detailed analysis of in silico motions prompted the proposition of wobble autocorrelation as an indicator of two-dimensional function. Insight into two-dimensional bond formation gained from flow cell assays might therefore be important to understand processes involving extended cellular interactions, such as immunological synapse formation. A biologically informative in silico system was created with minimal, high-confidence inputs. Incorporating random effects in surface separation through thermal motion enabled new deductions of the effects of surface-constrained biomolecular function. Important molecular information is embedded in the patterns and statistics of motion

    New approaches to the study of human brain networks underlying spatial attention and related processes

    Get PDF
    Cognitive processes, such as spatial attention, are thought to rely on extended networks in the human brain. Both clinical data from lesioned patients and fMRI data acquired when healthy subjects perform particular cognitive tasks typically implicate a wide expanse of potentially contributing areas, rather than just a single brain area. Conversely, evidence from more targeted interventions, such as transcranial magnetic stimulation (TMS) or invasive microstimulation of the brain, or selective study of patients with highly focal brain damage, can sometimes indicate that a single brain area may make a key contribution to a particular cognitive process. But this in turn raises questions about how such a brain area may interface with other interconnected areas within a more extended network to support cognitive processes. Here, we provide a brief overview of new approaches that seek to characterise the causal role of particular brain areas within networks of several interacting areas, by measuring the effects of manipulations for a targeted area on function in remote interconnected areas. In human participants, these approaches include concurrent TMS-fMRI and TMS-EEG, as well as combination of the focal lesion method in selected patients with fMRI and/or EEG measures of the functional impact from the lesion on interconnected intact brain areas. Such approaches shed new light on how frontal cortex and parietal cortex modulate sensory areas in the service of attention and cognition, for the normal and damaged human brain

    Molecular Biomechanics: The Molecular Basis of How Forces Regulate Cellular Function

    Get PDF
    Recent advances have led to the emergence of molecular biomechanics as an essential element of modern biology. These efforts focus on theoretical and experimental studies of the mechanics of proteins and nucleic acids, and the understanding of the molecular mechanisms of stress transmission, mechanosensing and mechanotransduction in living cells. In particular, single-molecule biomechanics studies of proteins and DNA, and mechanochemical coupling in biomolecular motors have demonstrated the critical importance of molecular mechanics as a new frontier in bioengineering and life sciences. To stimulate a more systematic study of the basic issues in molecular biomechanics, and attract a broader range of researchers to enter this emerging field, here we discuss its significance and relevance, describe the important issues to be addressed and the most critical questions to be answered, summarize both experimental and theoretical/computational challenges, and identify some short-term and long-term goals for the field. The needs to train young researchers in molecular biomechanics with a broader knowledge base, and to bridge and integrate molecular, subcellular and cellular level studies of biomechanics are articulated.National Institutes of Health (U.S.) (grant UO1HL80711-05 to GB)National Institutes of Health (U.S.) (grant R01GM076689-01)National Institutes of Health (U.S.) (grant R01AR033236-26)National Institutes of Health (U.S.) (grant R01GM087677-01A1)National Institutes of Health (U.S.) (grant R01AI44902)National Institutes of Health (U.S.) (grant R01AI38282)National Science Foundation (U.S.) (grant CMMI-0645054)National Science Foundation (U.S.) (grant CBET-0829205)National Science Foundation (U.S.) (grant CAREER-0955291

    Preparation interval and cue utilization in the prevention of distraction

    Get PDF
    Maintaining a selective attention set allows us to efficiently perform sensory tasks despite the multitude of concurrent sensory stimuli. Unpredictably occurring, rare events nonetheless capture our attention, that is, we get distracted. The present study investigated the efficiency of control over distraction as a function of preparation time available before a forthcoming distracter. A random sequence of short and long tones (100 or 200 ms with 50–50 % probability) was presented. Independently from tone duration, occasionally (13.3 % of the time), the pitch of a tone was changed. Such rare pitch variants (distracters) usually lead to delayed and less precise discrimination responses, and trigger a characteristic series of event-related potentials (ERPs) reflecting the stages of distraction-related processing: starting with negative ERPs signaling the sensory registration of the distracter; a P3a—usually interpreted as a reflection of involuntary attention change and finally the so-called reorienting negativity signaling the restoration of the task-optimal attention set. In separate conditions, 663 or 346 ms before each tone (long or short cue-tone interval), a visual cue was presented, which signaled whether the forthcoming tone was a distracter (rare pitch variant), with 80 % validity. As reflected by reduced reaction time delays and P3a amplitudes, valid cues led to the prevention of distraction, but only in the long cue-tone interval condition. The analyses of the cue-related P3b and contingent negative variation showed that participants made more effort to utilize cue information to prevent distraction in the long cue-tone than in the short cue-tone interval condition

    The Use of Betaine HCl to Enhance Dasatinib Absorption in Healthy Volunteers with Rabeprazole-Induced Hypochlorhydria

    No full text
    Many orally administered, small-molecule, targeted anticancer drugs, such as dasatinib, exhibit pH-dependent solubility and reduced drug exposure when given with acid-reducing agents. We previously demonstrated that betaine hydrochloride (BHCl) can transiently re-acidify gastric pH in healthy volunteers with drug-induced hypochlorhydria. In this randomized, single-dose, three-way crossover study, healthy volunteers received dasatinib (100 mg) alone, after pretreatment with rabeprazole, and with 1500 mg BHCl after rabeprazole pretreatment, to determine if BHCl can enhance dasatinib absorption in hypochlorhydric conditions. Rabeprazole (20 mg b.i.d.) significantly reduced dasatinib C(max) and AUC(0-∞) by 92 and 78%, respectively. However, coadministration of BHCl significantly increased dasatinib C(max) and AUC(0-∞) by 15- and 6.7-fold, restoring them to 105 and 121%, respectively, of the control (dasatinib alone). Therefore, BHCl reversed the impact of hypochlorhydria on dasatinib drug exposure and may be an effective strategy to mitigate potential drug-drug interactions for drugs that exhibit pH-dependent solubility and are administered orally under hypochlorhydric conditions
    corecore