17 research outputs found

    Characterizing the pathotype of neonatal meningitis causing <i>Escherichia coli</i> (NMEC)

    Get PDF
    Background Neonatal meningitis-causing Escherichia coli (NMEC) is the predominant Gram-negative bacterial pathogen associated with meningitis in newborn infants. High levels of heterogeneity and diversity have been observed in the repertoire of virulence traits and other characteristics among strains of NMEC making it difficult to define the NMEC pathotype. The objective of the present study was to identify genotypic and phenotypic characteristics of NMEC that can be used to distinguish them from commensal E. coli. Methods A total of 53 isolates of NMEC obtained from neonates with meningitis and 48 isolates of fecal E. coli obtained from healthy individuals (HFEC) were comparatively evaluated using five phenotypic (serotyping, serum bactericidal assay, biofilm assay, antimicorbial susceptibility testing, and in vitro cell invasion assay) and three genotypic (phylogrouping, virulence genotyping, and pulsed-field gel electrophoresis) methods. Results A majority (67.92 %) of NMEC belonged to B2 phylogenetic group whereas 59 % of HFEC belonged to groups A and D. Serotyping revealed that the most common O and H types present in NMEC tested were O1 (15 %), O8 (11.3 %), O18 (13.2 %), and H7 (25.3 %). In contrast, none of the HFEC tested belonged to O1 or O18 serogroups. The most common serogroup identified in HFEC was O8 (6.25 %). The virulence genotyping reflected that more than 70 % of NMEC carried kpsII, K1, neuC, iucC, sitA, and vat genes with only less than 27 % of HFEC possessing these genes. All NMEC and 79 % of HFEC tested were able to invade human cerebral microvascular endothelial cells. No statistically significant difference was observed in the serum resistance phenotype between NMEC and HFEC. The NMEC strains demonstrated a greater ability to form biofilms in Luria Bertani broth medium than did HFEC (79.2 % vs 39.9 %). Conclusion The results of our study demonstrated that virulence genotyping and phylogrouping may assist in defining the potential NMEC pathotype

    Virulence factors in Escherichia coli strains isolated from urinary tract infection and pyometra cases and from feces of healthy dogs

    No full text
    The aim of this study was to compare the prevalence of virulence genes in 158 Escherichia coli strains isolated from 51 clinical cases of UTIs, 52 of pyometra and from 55 fecal samples from healthy dogs by PCR. papC was found in 12 (23.5%) strains isolated from UTIs, 19 (36.5%) from pyometra and 10 (18.2%) from feces. papGII was observed in 3 (5.8%) strains from pyometra, and papGIII in 10 (19.6%) from UTIs, 15 (28.8%) from pyometra and 9 (16.4%) from feces. sfaS was detected in 22 (43.1%) strains from UTIs, 24 (46.1%) from pyometra and 19 (34.5%) from feces. hlyA was observed in 17 (33.3%) strains from UTIs, 18 (34.6%) from pyometra and 7 (12.7%) from feces, while cnf-1 was detected in 11 (21.6%) from UTIs, 21 (40.4%) from pyometra and 9 (16.4%) from feces. iucD was observed in 12 (23.5%) strains from UTIs, 9 (17.3%) from pyometra and 1 (1.8%) from feces. usp was found 17 (33.3%) isolates from UTIs and 36 (69.9%) from pyometra. (c) 2008 Elsevier Ltd. All rights reserved.86220621

    Draft Genome of a Brazilian Avian-Pathogenic Escherichia coli Strain and In Silico Characterization of Virulence-Related Genes

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Avian-pathogenic Escherichia coil (APEC) strains cause extraintestinal diseases in avian species. Here, we present the draft genome of an APEC strain (SCI-07) from Brazil that was isolated from skin lesions (gelatinous edema) on the head and periorbital tissues of a laying hen with swollen head syndrome.1941130233023Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)FAPESP [Proc. 2010/51421-8]CAPES [Proc. 23038.042588/2008-11
    corecore