41 research outputs found

    Relationship Between Non-Hodgkin's Lymphoma and Blood Levels of Epstein-Barr Virus in Children in North-Western Tanzania: A Case Control Study.

    Get PDF
    Non-Hodgkin's Lymphomas (NHL) are common in African children, with endemic Burkitt's lymphoma (BL) being the most common subtype. While the role of Epstein-Barr Virus (EBV) in endemic BL is known, no data are available about clinical presentations of NHL subtypes and their relationship to Human Immunodeficiency Virus (HIV) infection and Epstein Barr Virus (EBV) load in peripheral blood of children in north-western, Tanzania. A matched case control study of NHL subtypes was performed in children under 15 years of age and their respective controls admitted to Bugando Medical Centre, Sengerema and Shirati district designated hospitals in north-western, Tanzania, between September 2010 and April 2011. Peripheral blood samples were collected on Whatman 903 filter papers and EBV DNA levels were estimated by multiplex real-time PCR. Clinical and laboratory data were collected using a structured data collection tool and analysed using chi-square, Fisher and Wilcoxon rank sum tests where appropriate. The association between NHL and detection of EBV in peripheral blood was assessed using conditional logistic regression model and presented as odds ratios (OR) and 95% confidence intervals (CI). A total of 35 NHL cases and 70 controls matched for age and sex were enrolled. Of NHLs, 32 had BL with equal distribution between jaw and abdominal tumour, 2 had large B cell lymphoma (DLBCL) and 1 had NHL-not otherwise specified (NHL-NOS). Central nervous system (CNS) presentation occurred only in 1 BL patient; 19 NHLs had stage I and II of disease. Only 1 NHL was found to be HIV-seropositive. Twenty-one of 35 (60%) NHL and 21 of 70 (30%) controls had detectable EBV in peripheral blood (OR = 4.77, 95% CI 1.71 - 13.33, p = 0.003). In addition, levels of EBV in blood were significantly higher in NHL cases than in controls (p = 0.024). BL is the most common childhood NHL subtype in north-western Tanzania. NHLs are not associated with HIV infection, but are strongly associated with EBV load in peripheral blood. The findings suggest that high levels of EBV in blood might have diagnostic and prognostic relevance in African children

    P73 regulates cisplatin-induced apoptosis in ovarian cancer cells via a calcium/calpain-dependent mechanism

    Get PDF
    P73 is important in drug-induced apoptosis in some cancer cells, yet its role in the regulation of chemosensitivity in ovarian cancer (OVCA) is poorly understood. Furthermore, if and how the deregulation of p73-mediated apoptosis confers resistance to cisplatin (CDDP) treatment is unclear. Here we demonstrate that TAp73α over-expression enhanced CDDP-induced PARP cleavage and apoptosis in both chemosensitive (OV2008 and A2780s) and their resistant counterparts (C13* and A2780cp) and another chemoresistant OVCA cells (Hey); in contrast, the effect of ΔNp73α over-expression was variable. P73α downregulation attenuated CDDP-induced PUMA and NOXA upregulation and apoptosis in OV2008 cells. CDDP decreased p73α steady-state protein levels in OV2008, but not in C13*, although the mRNA expression was identical. CDDP-induced p73α downregulation was mediated by a calpain-dependent pathway. CDDP induced calpain activation and enhanced its cytoplasmic interaction and co-localization with p73α in OV2008, but not C13* cells. CDDP increased the intracellular calcium concentration ([Ca2+]i) in OV2008 but not C13* whereas cyclopiazonic acid (CPA), a Ca2+-ATPase inhibitor, caused this response and calpain activation, p73α processing and apoptosis in both cell types. CDDP-induced [Ca2+]i increase in OV2008 cells was not effected by the elimination of extracellular Ca2+, but this was attenuated by the depletion of internal Ca2+ store, indicating that mobilization of intracellular Ca2+] stores was potentially involved. These findings demonstrate that p73α and its regulation by the Ca2+-mediated calpain pathway are involved in CDDP-induced apoptosis in OVCA cells and that dysregulation of Ca2+/calpain/p73 signaling may in part be the pathophysiology of CDDP resistance. Understanding the cellular and molecular mechanisms of chemoresistance will direct the development of effective strategies for the treatment of chemoresistant OVCA

    The Zea mays mutants opaque-2 and opaque-7 disclose extensive changes in endosperm metabolism as revealed by protein, amino acid, and transcriptome-wide analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The changes in storage reserve accumulation during maize (<it>Zea mays </it>L.) grain maturation are well established. However, the key molecular determinants controlling carbon flux to the grain and the partitioning of carbon to starch and protein are more elusive. The <it>Opaque-2 </it>(<it>O2</it>) gene, one of the best-characterized plant transcription factors, is a good example of the integration of carbohydrate, amino acid and storage protein metabolisms in maize endosperm development. Evidence also indicates that the <it>Opaque-7 </it>(<it>O7</it>) gene plays a role in affecting endosperm metabolism. The focus of this study was to assess the changes induced by the <it>o2 </it>and <it>o7 </it>mutations on maize endosperm metabolism by evaluating protein and amino acid composition and by transcriptome profiling, in order to investigate the functional interplay between these two genes in single and double mutants.</p> <p>Results</p> <p>We show that the overall amino acid composition of the mutants analyzed appeared similar. Each mutant had a high Lys and reduced Glx and Leu content with respect to wild type. Gene expression profiling, based on a unigene set composed of 7,250 ESTs, allowed us to identify a series of mutant-related down (17.1%) and up-regulated (3.2%) transcripts. Several differentially expressed ESTs homologous to genes encoding enzymes involved in amino acid synthesis, carbon metabolism (TCA cycle and glycolysis), in storage protein and starch metabolism, in gene transcription and translation processes, in signal transduction, and in protein, fatty acid, and lipid synthesis were identified. Our analyses demonstrate that the mutants investigated are pleiotropic and play a critical role in several endosperm-related metabolic processes. Pleiotropic effects were less evident in the <it>o7 </it>mutant, but severe in the <it>o2 </it>and <it>o2o7 </it>backgrounds, with large changes in gene expression patterns, affecting a broad range of kernel-expressed genes.</p> <p>Conclusion</p> <p>Although, by necessity, this paper is descriptive and more work is required to define gene functions and dissect the complex regulation of gene expression, the genes isolated and characterized to date give us an intriguing insight into the mechanisms underlying endosperm metabolism.</p

    Cisgenesis and intragenesis as new strategies for crop improvement

    Get PDF
    Cisgenesis and intragenesis are emerging plant breeding technologies which offer great promise for future acceptance of genetically engineered crops. The techniques employ traditional genetic engineering methods but are confined to transferring of genes and genetic elements between sexually compatible species that can breed naturally. One of the main requirements is the absence of selectable marker genes (such as antibiotic resistance genes) in the genome. Hence the sensitive issues with regard to transfer of foreign genes and antibiotic resistance are overcome. It is a targeted technique involving specific locus; therefore, linkage drag that prolongs the time for crop improvement in traditional breeding does not occur. It has great potential for crop improvement using superior alleles that exist in the untapped germplasm or wild species. Cisgenic and intragenic plants may not face the same stringent regulatory assessment for field release as transgenic plants which is a clear added advantage that would save time. In this chapter, the concepts of cis/intragenesis and the prerequisites for the development of cis/intragenesis plants are elaborated. Strategies for marker gene removal after selection of transformants are discussed based on the few recent reports from various plant species

    State-of-the-art two-dimensional gel electrophoresis: a key tool of proteomics research

    No full text
    Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) is the most popular and versatile method of protein separation among a rapidly growing array of proteomics technologies. Based on two distinct procedures, it combines isoelectric focusing (IEF), which separates proteins according to their isoelectric point (pI), and SDS-PAGE, which separates them further according to their molecular mass. At present, 2D-PAGE is capable of simultaneously detecting and quantifying up to several thousand protein spots in the same gel image. Here we provide comprehensive step-by-step instructions for the application of a standardized 2D-PAGE protocol to a sample of human plasma or cerebrospinal fluid (CSF). The method can be easily adapted to any type of sample. This four-day protocol provides detailed information on how to apply complex biological fluids to an immobilized dry strip gel, cast home-made gradient acrylamide gels, run the gels, and perform standard staining methods. A troubleshooting guide is also included

    Biped locomotion control through a biomimetic CPG-based controller

    No full text
    Modern concepts of motor learning favour intensivetrainingdirectedtotheneuralnetworksstimulation and reorganization within the spinal cord, the central pattern generator, by taking advantage of the neural plasticity. In the present work, a biomimetic controller using a system of adaptive oscillators is proposed to understand the neuronal principles underlying the human locomotion. A framework for neural control is presented, enabling the following contributions: a) robustness to external perturbations; b) flexibility to variations in the environmental constraints; and c) incorporation of volitional mechanisms for self-adjustment of gait dynamics. Phase modulation of adaptive oscillators and postural balance control are proposed as main strategies for stable locomotion. Simulations of the locomotion model with a biped robot in closed-loop control are presented to validate the implemented neuronal principles. Specifically, the proposed system for online modulation of previous learnt gait patterns was verified in terrains with different slopes. The proposed phase modulation method and postural balanced control enabled robustness enhancement considering a broader range of slope angles than recent studies. Furthermore, the system was also verified for tilted ground including different slopes in the same experiment and uneven terrain with obstacles. Adaptive Frequency Oscillators, under Dynamic Hebbian Learning Adaptation mechanism, are proposed to build a hierarchical control architecture with spinal and supra spinal centers with multiple rhythm-generating neural networks that drive the legs of a biped model. The proposed neural oscillators are based on frequency adaptation and can be entrained by sensory feedback to learn specific patterns. The proposed biomimetic controller intrinsically generates patterns of rhythmic activity that can be induced to sustain CPG function by specific training. This method provides versatile control, paving the way for the design of experimental motor control studies, optimal rehabilitation procedures and robot-assisted therapeutic outcomes.Exchange of views with the supervisors, Vítor Matos from ABSGroup and several colleagues from the Bioengineering Group of CSI Convarious issues have proven to be vitally important in promoting gradual development of this study as well as in highlighting and clarifying priority steps for the improvement of the research, by which my particular thanks are expressed to them. This work is supported by FCT with the reference project UID/EEA/04436/2013, by FEDER funds through the COMPETE 2020 Programa Operacional Competitividade e Internacionalizao (POCI) with the reference project POCI-01-0145-FEDER-006941. This research has been funded by the Commission of the European Union under the BioMot project - Smart Wearable Robots with Bioinspired SensoryMotor Skills (Grant Agreement number IFP7-ICT- 2013-10-611695).info:eu-repo/semantics/publishedVersio
    corecore