419 research outputs found
Design and development of 3D printed catalytically-active stirrers for chemical synthesis
In this present study, we describe the novel design, preparation and evaluation of catalyst-impregnated stirrer beads for chemical synthesis. Using a low-cost SLA 3D printer and freeware design software, a high surface area holder for a magnetic stirrer bead was developed and 3D printed containing p-toluenesulfonic acid. The devices were used to efficiently catalyze Mannich reactions in excellent yields and it was demonstrated that the devices can be re-used up to 5-times with excellent reproducibility
Extending practical flow chemistry into the undergraduate curriculum via the use of a portable low-cost 3D printed continuous flow system
Continuous flow chemistry is undergoing rapid growth and adoption within the pharmaceutical industry due to its ability to rapidly
translate chemical discoveries from medicinal chemistry laboratories into process laboratories. Its growing significance means that it
is imperative that flow chemistry is taught and experienced by both undergraduate and postgraduate synthetic chemists. However,
whilst flow chemistry has been incorporated by industry, there remains a distinct lack of practical training and knowledge at both
undergraduate and postgraduate levels. A key challenge associated with its implementation is the high cost (>$25,000) of the
systemâs themselves, which is far beyond the financial reach of most universities and research groups, meaning that this key
technology remains open to only a few groups and that its associated training remains a theoretical rather than a practical subject.
In order to increase access to flow chemistry, we sought to design and develop a small-footprint, low-cost and portable continuous
flow system that could be used to teach flow chemistry, but that could also be used by research groups looking to transition to
continuous flow chemistry. A key element of its utility focusses on its 3D printed nature, as low-cost reactors could be readily
incorporated and modified to suit differing needs and educational requirements. In this paper, we demonstrate the systemâs
flexibility using reactors and mixing chips designed and 3D printed by an undergraduate project student (N.T.) and show how
the flexibility of the system allows the investigation of differing flow paths on the same continuous flow system in parallel
Confocal laser scanning, scanning electron, and transmission electron microscopy investigation of Enterococcus faecalis biofilm degradation using passive and active sodium hypochlorite irrigation within a simulated root canal model
Root canal irrigation is an important adjunct to control microbial infection. The aim of this study was to investigate the effect of 2.5% (wt/vol) sodium hypochlorite (NaOCl) agitation on the removal, killing, and degradation of Enterococcus faecalis biofilm. A total of 45 root canal models were manufactured using 3D printing with each model comprising an 18 mm length simulated root canal of apical size 30 and taper 0.06. E. faecalis biofilms were grown on the apical 3 mm of the models for 10 days. A total of 60 s of 9 ml of 2.5% NaOCl irrigation using syringe and needle was performed, the irrigant was either left stagnant in the canal or agitated using manual (Gutta-percha), sonic, and ultrasonic methods for 30 s. Following irrigation, the residual biofilms were observed using confocal laser scanning, scanning electron, and transmission electron microscopy. The data were analyzed using one-way ANOVA with Dunnett post hoc tests at a level of significance p â€Â .05. Consequence of root canal irrigation indicate that the reduction in the amount of biofilm achieved with the active irrigation groups (manual, sonic, and ultrasonic) was significantly greater when compared with the passive and untreated groups (p < .05). Collectively, finding indicate that passive irrigation exhibited more residual biofilm on the model surface than irrigant agitated by manual or automated (sonic, ultrasonic) methods. Total biofilm degradation and nonviable cells were associated with the ultrasonic group
3D Printed Franz cells - update on optimization of manufacture and evaluation
The evaluation of permeation profiles from cosmetic formulations is considered to be a crucial component in both the development and quality assurance of any new product [1, 2]. Data gathered from such studies allow researchers to assess the viability of delivering different materials to and through biological membranes. To date, laboratory in vitro permeation processes require the use of modified Franz type diffusion cells, conventionally fabricated from glass, which are available in different formats that can be customised to experimental requirements [3]
The effect of sodium hypochlorite concentration and irrigation needle extension on biofilm removal from a simulated root canal model
To investigate the effect of sodium hypochlorite concentration and needle extension on removal of Enterococcus faecalis biofilm, sixty root canal models were 3D printed. Biofilms were grown on the apical 3 mm of the canal for 10 days. Irrigation for 60s with 9 mL of either 5.25% or 2.5% NaOCl or water was performed using a needle inserted either 3 or 2 mm from the canal terminus and imaged using fluorescence microscopy and residual biofilm percentages were calculated using imaging software. The data were analysed using analysis of covariance and two-sample t-tests. A significance level of 0.05 was used throughout. Residual biofilm was less using 5.25% than with 2.5% NaOCl. Statistically significant biofilm removal was evident with the needle placed closer to the canal terminus. A greater reduction of available chlorine and pH was noted as the concentration increased. One-minute irrigation was not sufficient for complete biofilm removal
The pestivirus N terminal protease N(pro) redistributes to mitochondria and peroxisomes suggesting new sites for regulation of IRF3 by N(pro.)
The N-terminal protease of pestiviruses, N(pro) is a unique viral protein, both because it is a distinct autoprotease that cleaves itself from the following polyprotein chain, and also because it binds and inactivates IRF3, a central regulator of interferon production. An important question remains the role of N(pro) in the inhibition of apoptosis. In this study, apoptotic signals induced by staurosporine, interferon, double stranded RNA, sodium arsenate and hydrogen peroxide were inhibited by expression of wild type N(pro), but not by mutant protein N(pro) C112R, which we show is less efficient at promoting degradation of IRF3, and led to the conclusion that N(pro) inhibits the stress-induced intrinsic mitochondrial pathway through inhibition of IRF3-dependent Bax activation. Both expression of N(pro) and infection with Bovine Viral Diarrhea Virus (BVDV) prevented Bax redistribution and mitochondrial fragmentation. Given the role played by signaling platforms during IRF3 activation, we have studied the subcellular distribution of N(pro) and we show that, in common with many other viral proteins, N(pro) targets mitochondria to inhibit apoptosis in response to cell stress. N(pro) itself not only relocated to mitochondria but in addition, both N(pro) and IRF3 associated with peroxisomes, with over 85% of N(pro) puncta co-distributing with PMP70, a marker for peroxisomes. In addition, peroxisomes containing N(pro) and IRF3 associated with ubiquitin. IRF3 was degraded, whereas N(pro) accumulated in response to cell stress. These results implicate mitochondria and peroxisomes as new sites for IRF3 regulation by N(pro), and highlight the role of these organelles in the anti-viral pathway
Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling
Large brain size is one of the defining characteristics of modern humans. Seckel syndrome (MIM 210600), a disorder of markedly reduced brain and body size, is associated with defective ATR-dependent DNA damage signaling. Only a single hypomorphic mutation of ATR has been identified in this genetically heterogeneous condition. We now report that mutations in the gene encoding pericentrin (PCNT)--resulting in the loss of pericentrin from the centrosome, where it has key functions anchoring both structural and regulatory proteins--also cause Seckel syndrome. Furthermore, we find that cells of individuals with Seckel syndrome due to mutations in PCNT (PCNT-Seckel) have defects in ATR-dependent checkpoint signaling, providing the first evidence linking a structural centrosomal protein with DNA damage signaling. These findings also suggest that other known microcephaly genes implicated in either DNA repair responses or centrosomal function may act in common developmental pathways determining human brain and body size
- âŠ