88 research outputs found
Ensemble Composition and Activity Levels of Insectivorous Bats in Response to Management Intensification in Coffee Agroforestry Systems
Shade coffee plantations have received attention for their role in biodiversity conservation. Bats are among the most diverse mammalian taxa in these systems; however, previous studies of bats in coffee plantations have focused on the largely herbivorous leaf-nosed bats (Phyllostomidae). In contrast, we have virtually no information on how ensembles of aerial insectivorous bats – nearly half the Neotropical bat species – change in response to habitat modification. To evaluate the effects of agroecosystem management on insectivorous bats, we studied their diversity and activity in southern Chiapas, Mexico, a landscape dominated by coffee agroforestry. We used acoustic monitoring and live captures to characterize the insectivorous bat ensemble in forest fragments and coffee plantations differing in the structural and taxonomic complexity of shade trees. We captured bats of 12 non-phyllostomid species; acoustic monitoring revealed the presence of at least 12 more species of aerial insectivores. Richness of forest bats was the same across all land-use types; in contrast, species richness of open-space bats increased in low shade, intensively managed coffee plantations. Conversely, only forest bats demonstrated significant differences in ensemble structure (as measured by similarity indices) across land-use types. Both overall activity and feeding activity of forest bats declined significantly with increasing management intensity, while the overall activity, but not feeding activity, of open-space bats increased. We conclude that diverse shade coffee plantations in our study area serve as valuable foraging and commuting habitat for aerial insectivorous bats, and several species also commute through or forage in low shade coffee monocultures
Ensemble Composition and Activity Levels of Insectivorous Bats in Response to Management Intensification in Coffee Agroforestry Systems
Shade coffee plantations have received attention for their role in biodiversity conservation. Bats are among the most diverse mammalian taxa in these systems; however, previous studies of bats in coffee plantations have focused on the largely herbivorous leaf-nosed bats (Phyllostomidae). In contrast, we have virtually no information on how ensembles of aerial insectivorous bats – nearly half the Neotropical bat species – change in response to habitat modification. To evaluate the effects of agroecosystem management on insectivorous bats, we studied their diversity and activity in southern Chiapas, Mexico, a landscape dominated by coffee agroforestry. We used acoustic monitoring and live captures to characterize the insectivorous bat ensemble in forest fragments and coffee plantations differing in the structural and taxonomic complexity of shade trees. We captured bats of 12 non-phyllostomid species; acoustic monitoring revealed the presence of at least 12 more species of aerial insectivores. Richness of forest bats was the same across all land-use types; in contrast, species richness of open-space bats increased in low shade, intensively managed coffee plantations. Conversely, only forest bats demonstrated significant differences in ensemble structure (as measured by similarity indices) across land-use types. Both overall activity and feeding activity of forest bats declined significantly with increasing management intensity, while the overall activity, but not feeding activity, of open-space bats increased. We conclude that diverse shade coffee plantations in our study area serve as valuable foraging and commuting habitat for aerial insectivorous bats, and several species also commute through or forage in low shade coffee monocultures
Finding one's way in proteomics: a protein species nomenclature
Our knowledge of proteins has greatly improved in recent years, driven by new technologies in the fields of molecular biology and proteome research. It has become clear that from a single gene not only one single gene product but many different ones - termed protein species - are generated, all of which may be associated with different functions. Nonetheless, an unambiguous nomenclature for describing individual protein species is still lacking. With the present paper we therefore propose a systematic nomenclature for the comprehensive description of protein species. The protein species nomenclature is flexible and adaptable to every level of knowledge and of experimental data in accordance with the exact chemical composition of individual protein species. As a minimum description the entry name (gene name + species according to the UniProt knowledgebase) can be used, if no analytical data about the target protein species are available
Transcriptome profiling of immune responses to cardiomyopathy syndrome (CMS) in Atlantic salmon
<p>Abstract</p> <p>Background</p> <p>Cardiomyopathy syndrome (CMS) is a disease associated with severe myocarditis primarily in adult farmed Atlantic salmon (<it>Salmo salar </it>L.), caused by a double-stranded RNA virus named piscine myocarditis virus (PMCV) with structural similarities to the <it>Totiviridae </it>family. Here we present the first characterisation of host immune responses to CMS assessed by microarray transcriptome profiling.</p> <p>Results</p> <p>Unvaccinated farmed Atlantic salmon post-smolts were infected by intraperitoneal injection of PMCV and developed cardiac pathology consistent with CMS. From analysis of heart samples at several time points and different tissues at early and clinical stages by oligonucleotide microarrays (SIQ2.0 chip), six gene sets representing a broad range of immune responses were identified, showing significant temporal and spatial regulation. Histopathological examination of cardiac tissue showed myocardial lesions from 6 weeks post infection (wpi) that peaked at 8-9 wpi and was followed by a recovery. Viral RNA was detected in all organs from 4 wpi suggesting a broad tissue tropism. High correlation between viral load and cardiac histopathology score suggested that cytopathic effect of infection was a major determinant of the myocardial changes. Strong and systemic induction of antiviral and IFN-dependent genes from 2 wpi that levelled off during infection, was followed by a biphasic activation of pathways for B cells and MHC antigen presentation, both peaking at clinical pathology. This was preceded by a distinct cardiac activation of complement at 6 wpi, suggesting a complement-dependent activation of humoral Ab-responses. Peak of cardiac pathology and viral load coincided with cardiac-specific upregulation of T cell response genes and splenic induction of complement genes. Preceding the reduction in viral load and pathology, these responses were probably important for viral clearance and recovery.</p> <p>Conclusions</p> <p>By comparative analysis of gene expression, histology and viral load, the temporal and spatial regulation of immune responses were characterised and novel immune genes identified, ultimately leading to a more complete understanding of host-virus responses and pathology and protection in Atlantic salmon during CMS.</p
Trade-Off between Toxicity and Signal Detection Orchestrated by Frequency- and Density-Dependent Genes
Behaviors in insects are partly highly efficient Bayesian processes that fulfill exploratory tasks ending with the colonization of new ecological niches. The foraging (for) gene in Drosophila encodes a cGMP-dependent protein kinase (PKG). It has been extensively described as a frequency-dependent gene and its transcripts are differentially expressed between individuals, reflecting the population density context. Some for transcripts, when expressed in a population at high density for many generations, concomitantly trigger strong dispersive behavior associated with foraging activity. Moreover, genotype-by-environment interaction (GEI) analysis has highlighted a dormant role of for in energetic metabolism in a food deprivation context. In our current report, we show that alleles of for encoding different cGMP-dependent kinase isoforms influence the oxidation of aldehyde groups of aromatic molecules emitted by plants via Aldh-III and a phosphorylatable adaptor. The enhanced efficiency of oxidation of aldehyde odorants into carboxyl groups by the action of for lessens their action and toxicity, which should facilitate exploration and guidance in a complex odor environment. Our present data provide evidence that optimal foraging performance requires the fast metabolism of volatile compounds emitted by plants to avoid neurosensory saturation and that the frequency-dependent genes that trigger dispersion influence these processes
Relative Impacts of Adult Movement, Larval Dispersal and Harvester Movement on the Effectiveness of Reserve Networks
Movement of individuals is a critical factor determining the effectiveness of
reserve networks. Marine reserves have historically been used for the management
of species that are sedentary as adults, and, therefore, larval dispersal has
been a major focus of marine-reserve research. The push to use marine reserves
for managing pelagic and demersal species poses significant questions regarding
their utility for highly-mobile species. Here, a simple conceptual
metapopulation model is developed to provide a rigorous comparison of the
functioning of reserve networks for populations with different admixtures of
larval dispersal and adult movement in a home range. We find that adult movement
produces significantly lower persistence than larval dispersal, all other
factors being equal. Furthermore, redistribution of harvest effort previously in
reserves to remaining fished areas (‘fishery squeeze’) and fishing
along reserve borders (‘fishing-the-line’) considerably reduce
persistence and harvests for populations mobile as adults, while they only
marginally changes results for populations with dispersing larvae. Our results
also indicate that adult home-range movement and larval dispersal are not simply
additive processes, but rather that populations possessing both modes of
movement have lower persistence than equivalent populations having the same
amount of ‘total movement’ (sum of larval and adult movement spatial
scales) in either larval dispersal or adult movement alone
Transcriptional Regulation Is a Major Controller of Cell Cycle Transition Dynamics
DNA replication, mitosis and mitotic exit are critical transitions of the cell cycle which normally occur only once per cycle. A universal control mechanism was proposed for the regulation of mitotic entry in which Cdk helps its own activation through two positive feedback loops. Recent discoveries in various organisms showed the importance of positive feedbacks in other transitions as well. Here we investigate if a universal control system with transcriptional regulation(s) and post-translational positive feedback(s) can be proposed for the regulation of all cell cycle transitions. Through computational modeling, we analyze the transition dynamics in all possible combinations of transcriptional and post-translational regulations. We find that some combinations lead to ‘sloppy’ transitions, while others give very precise control. The periodic transcriptional regulation through the activator or the inhibitor leads to radically different dynamics. Experimental evidence shows that in cell cycle transitions of organisms investigated for cell cycle dependent periodic transcription, only the inhibitor OR the activator is under cyclic control and never both of them. Based on these observations, we propose two transcriptional control modes of cell cycle regulation that either STOP or let the cycle GO in case of a transcriptional failure. We discuss the biological relevance of such differences
The Relative Influence of Competition and Prey Defenses on the Phenotypic Structure of Insectivorous Bat Ensembles in Southern Africa
Deterministic filters such as competition and prey defences should have a strong influence on the community structure of animals such as insectivorous bats that have life histories characterized by low fecundity, low predation risk, long life expectancy, and stable populations. We investigated the relative influence of these two deterministic filters on the phenotypic structure of insectivorous bat ensembles in southern Africa. We used null models to simulate the random phenotypic patterns expected in the absence of competition or prey defences and analysed the deviations of the observed phenotypic pattern from these expected random patterns. The phenotypic structure at local scales exhibited non-random patterns consistent with both competition and prey defense hypotheses. There was evidence that competition influenced body size distribution across ensembles. Competition also influenced wing and echolocation patterns in ensembles and in functional foraging groups with high species richness or abundance. At the same time, prey defense filters influenced echolocation patterns in two species-poor ensembles. Non-random patterns remained evident even after we removed the influence of body size from wing morphology and echolocation parameters taking phylogeny into account. However, abiotic filters such as geographic distribution ranges of small and large-bodied species, extinction risk, and the physics of flight and sound probably also interacted with biotic filters at local and/or regional scales to influence the community structure of sympatric bats in southern Africa. Future studies should investigate alternative parameters that define bat community structure such as diet and abundance to better determine the influence of competition and prey defences on the structure of insectivorous bat ensembles in southern Africa
Assessment of carbon in woody plants and soil across a vineyard-woodland landscape
<p>Abstract</p> <p>Background</p> <p>Quantification of ecosystem services, such as carbon (C) storage, can demonstrate the benefits of managing for both production and habitat conservation in agricultural landscapes. In this study, we evaluated C stocks and woody plant diversity across vineyard blocks and adjoining woodland ecosystems (wildlands) for an organic vineyard in northern California. Carbon was measured in soil from 44 one m deep pits, and in aboveground woody biomass from 93 vegetation plots. These data were combined with physical landscape variables to model C stocks using a geographic information system and multivariate linear regression.</p> <p>Results</p> <p>Field data showed wildlands to be heterogeneous in both C stocks and woody tree diversity, reflecting the mosaic of several different vegetation types, and storing on average 36.8 Mg C/ha in aboveground woody biomass and 89.3 Mg C/ha in soil. Not surprisingly, vineyard blocks showed less variation in above- and belowground C, with an average of 3.0 and 84.1 Mg C/ha, respectively.</p> <p>Conclusions</p> <p>This research demonstrates that vineyards managed with practices that conserve some fraction of adjoining wildlands yield benefits for increasing overall C stocks and species and habitat diversity in integrated agricultural landscapes. For such complex landscapes, high resolution spatial modeling is challenging and requires accurate characterization of the landscape by vegetation type, physical structure, sufficient sampling, and allometric equations that relate tree species to each landscape. Geographic information systems and remote sensing techniques are useful for integrating the above variables into an analysis platform to estimate C stocks in these working landscapes, thereby helping land managers qualify for greenhouse gas mitigation credits. Carbon policy in California, however, shows a lack of focus on C stocks compared to emissions, and on agriculture compared to other sectors. Correcting these policy shortcomings could create incentives for ecosystem service provision, including C storage, as well as encourage better farm stewardship and habitat conservation.</p
- …