256 research outputs found
Interactive Mixed-media Virtual Environment Prototyping
This paper details a tool for designing and simulating virtual environments in two dimensions. The system consists of computer controlled agents projected onto a whiteboard. Markings (which can be altered dynamically) on the whiteboard represent the obstructions (walls). A camera captures new images of the whiteboard constantly. The image is then processed by the image-processing component to determine where the walls are and this information is fed into the artificial intelligence component so that the agents move about realistically and do not move through walls. Natural movement throughout the environment is successfully implemented via a robust collision detection system as well as bounded path finding techniques. The AI system is efficient enough to allow for relatively large agent numbers, as well as operation at acceptable frame rate. The image processing first transforms the input images so that the projected area forms a rectangle. The image is then segmented by dividing the image into regions and calculating a threshold for each region based on an offset from the mean
Ward's Hierarchical Clustering Method: Clustering Criterion and Agglomerative Algorithm
The Ward error sum of squares hierarchical clustering method has been very
widely used since its first description by Ward in a 1963 publication. It has
also been generalized in various ways. However there are different
interpretations in the literature and there are different implementations of
the Ward agglomerative algorithm in commonly used software systems, including
differing expressions of the agglomerative criterion. Our survey work and case
studies will be useful for all those involved in developing software for data
analysis using Ward's hierarchical clustering method.Comment: 20 pages, 21 citations, 4 figure
Home visits by neighborhood Mentor Mothers provide timely recovery from childhood malnutrition in South Africa: results from a randomized controlled trial
Abstract Background Child and infant malnourishment is a significant and growing problem in the developing world. Malnourished children are at high risk for negative health outcomes over their lifespans. Philani, a paraprofessional home visiting program, was developed to improve childhood nourishment. The objective of this study is to evaluate whether the Philani program can rehabilitate malnourished children in a timely manner. Methods Mentor Mothers were trained to conduct home visits. Mentor Mothers went from house to house in assigned neighborhoods, weighed children age 5 and younger, and recruited mother-child dyads where there was an underweight child. Participating dyads were assigned in a 2:1 random sequence to the Philani intervention condition (n = 536) or a control condition (n = 252). Mentor Mothers visited dyads in the intervention condition for one year, supporting mothers' problem-solving around nutrition. All children were weighed by Mentor Mothers at baseline and three, six, nine and twelve month follow-ups. Results By three months, children in the intervention condition were five times more likely to rehabilitate (reach a healthy weight for their ages) than children in the control condition. Throughout the course of the study, 43% (n = 233 of 536) of children in the intervention condition were rehabilitated while 31% (n = 78 of 252) of children in the control condition were rehabilitated. Conclusions Paraprofessional Mentor Mothers are an effective strategy for delivering home visiting programs by providing the knowledge and support necessary to change the behavior of families at risk
Development and characterization of a microfluidic model of the tumour microenvironment
The physical microenvironment of tumours is characterized by heterotypic cell interactions and physiological gradients of nutrients, waste products and oxygen. This tumour microenvironment has a major impact on the biology of cancer cells and their response to chemotherapeutic agents. Despite this, most in vitro cancer research still relies primarily on cells grown in 2D and in isolation in nutrient- and oxygen-rich conditions. Here, a microfluidic device is presented that is easy to use and enables modelling and study of the tumour microenvironment in real-time. The versatility of this microfluidic platform allows for different aspects of the microenvironment to be monitored and dissected. This is exemplified here by real-time profiling of oxygen and glucose concentrations inside the device as well as effects on cell proliferation and growth, ROS generation and apoptosis. Heterotypic cell interactions were also studied. The device provides a live ‘window’ into the microenvironment and could be used to study cancer cells for which it is difficult to generate tumour spheroids. Another major application of the device is the study of effects of the microenvironment on cellular drug responses. Some data is presented for this indicating the device’s potential to enable more physiological in vitro drug screening
Lower crustal crystallization and melt evolution at mid-ocean ridges
Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Geoscience 5 (2012): 651–655, doi:10.1038/ngeo1552.Mid-ocean ridge magma is produced when Earth’s mantle rises beneath the ridge axis and melts as a result of the decrease in pressure. This magma subsequently undergoes cooling and crystallization to form the oceanic crust. However, there is no consensus on where within the crust or upper mantle crystallization occurs1-5. Here we provide direct geochemical evidence for the depths of crystallization beneath ridge axes of two spreading centres located in the Pacific Ocean: the fast-spreading-rate East Pacific Rise and intermediate-spreading-rate Juan de Fuca Ridge. Specifically, we measure volatile concentrations in olivine-hosted melt inclusions to derive vapour-saturation pressures and to calculate crystallisation depth. We also analyse the melt inclusions for major and trace element concentrations, allowing us to compare the distributions of crystallisation and to track the evolution of the melt during ascent through the oceanic crust. We find that most crystallisation occurs within a seismically-imaged melt lens located in the shallow crust at both ridges, but over 25% of the melt inclusions have crystallisation pressures consistent with formation in the lower oceanic crust. Furthermore, our results suggest that melts formed beneath the ridge axis can be efficiently mixed and undergo olivine crystallisation in the mantle, prior to ascent into the ocean crust.This research was supported by the National Science
Foundation (EAR-0646694) and the WHOI Deep Ocean Exploration Institute/Ocean
Ridge Initiative.2013-02-1
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Conservation of Complex Nuclear Localization Signals Utilizing Classical and Non-Classical Nuclear Import Pathways in LANA Homologs of KSHV and RFHV
ORF73 latency-associated nuclear antigen (LANA) of the Kaposi's sarcoma-associated herpesvirus (KSHV) is targeted to the nucleus of infected cells where it binds to chromatin and mediates viral episome persistence, interacts with cellular proteins and plays a role in latency and tumorigenesis. A structurally related LANA homolog has been identified in the retroperitoneal fibromatosis herpesvirus (RFHV), the macaque homolog of KSHV. Here, we report the evolutionary and functional conservation of a novel bi-functional nuclear localization signal (NLS) in KSHV and RFHV LANA. N-terminal peptides from both proteins were fused to EGFP or double EGFP fusions to examine their ability to induce nuclear transport of a heterologous protein. In addition, GST-pull down experiments were used to analyze the ability of LANA peptides to interact with members of the karyopherin family of nuclear transport receptors. Our studies revealed that both LANA proteins contain an N-terminal arginine/glycine (RG)-rich domain spanning a conserved chromatin-binding motif, which binds directly to importin β1 in a RanGTP-sensitive manner and serves as an NLS in the importin β1-mediated non-classical nuclear import pathway. Embedded within this domain is a conserved lysine/arginine-(KR)-rich bipartite motif that binds directly to multiple members of the importin α family of nuclear import adaptors in a RanGTP-insensitive manner and serves as an NLS in the classical importin α/β-mediated nuclear import pathway. The positioning of a classical bipartite kr-NLS embedded within a non-classical rg-NLS is a unique arrangement in these viral proteins, whose nuclear localization is critical to their functionality and to the virus life cycle. The ability to interact with multiple import receptors provides alternate pathways for nuclear localization of LANA. Since different import receptors can import cargo to distinct subnuclear compartments, a multifunctional NLS may provide LANA with an increased ability to interact with different nuclear components in its multifunctional role to maintain viral latency
Hf–Zr anomalies in clinopyroxene from mantle xenoliths from France and Poland: implications for Lu–Hf dating of spinel peridotite lithospheric mantle
Clinopyroxenes in some fresh anhydrous spinel peridotite mantle xenoliths from the northern Massif Central (France) and Lower Silesia (Poland), analysed for a range of incompatible trace elements by laser ablation inductively coupled plasma mass spectrometry, show unusually strong negative anomalies in Hf and Zr relative to adjacent elements Sm and Nd, on primitive mantle-normalised diagrams. Similar Zr–Hf anomalies have only rarely been reported from clinopyroxene in spinel peridotite mantle xenoliths worldwide, and most are not as strong as the examples reported here. Low Hf contents give rise to a wide range of Lu/Hf ratios, which over geological time would result in highly radiogenic εHf values, decoupling them from εNd ratios. The high 176Lu/177Hf could in theory produce an isochronous relationship with 176Hf/177Hf over time; an errorchron is shown by clinopyroxene from mantle xenoliths from the northern Massif Central. However, in a review of the literature, we show that most mantle spinel peridotites do not show such high Lu/Hf ratios in their constituent clinopyroxenes, because they lack the distinctive Zr–Hf anomaly, and this limits the usefulness of the application of the Lu–Hf system of dating to garnet-free mantle rocks. Nevertheless, some mantle xenoliths from Poland or the Czech Republic may be amenable to Hf-isotope dating in the future
- …