463 research outputs found

    DNA resection in eukaryotes: deciding how to fix the break

    Get PDF
    DNA double-strand breaks are repaired by different mechanisms, including homologous recombination and nonhomologous end-joining. DNA-end resection, the first step in recombination, is a key step that contributes to the choice of DSB repair. Resection, an evolutionarily conserved process that generates single-stranded DNA, is linked to checkpoint activation and is critical for survival. Failure to regulate and execute this process results in defective recombination and can contribute to human disease. Here, I review recent findings on the mechanisms of resection in eukaryotes, from yeast to vertebrates, provide insights into the regulatory strategies that control it, and highlight the consequences of both its impairment and its deregulation

    Extrapyramidal side effects and suicidal ideation under fluoxetine treatment: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We present the case of a 52-year-old woman with depression who developed extrapyramidal symptoms (mainly parkinsonism) and suicidal ideation while on fluoxetine.</p> <p>Methods</p> <p>The patient underwent neurological and neuroimaging examination.</p> <p>Results</p> <p>The patient's neurological and neuroimaging examinations were normal and there was no other cause of extrapyramidal symptoms. The patient showed remission of the aforementioned symptomatology when fluoxetine was discontinued.</p> <p>Conclusions</p> <p>This case shows that fluoxetine can be associated with extrapyramidal symptoms, and this may have an aggravating affect on clinical depression progress and the emergence of suicidal ideation.</p

    A Sensitive and Quantitative Polymerase Chain Reaction-Based Cell Free In Vitro Non-Homologous End Joining Assay for Hematopoietic Stem Cells

    Get PDF
    Hematopoietic stem cells (HSCs) are responsible for sustaining hematopoietic homeostasis and regeneration after injury for the entire lifespan of an organism. Maintenance of genomic stability is crucial for the preservation of HSCs, which depends on their efficient repair of DNA damage, particularly DNA double strand breaks (DSBs). Because of the paucity of HSCs and lack of sensitive assays, directly measuring the ability of HSCs to repair DSBs has been difficult. Therefore, we developed a sensitive and quantitative cell free in vitro non-homologous end joining (NHEJ) assay using linearized plasmids as the substrates and quantitative polymerase chain reaction (qPCR) technique. This assay can sensitively detect DSB repair via NHEJ in less than 1 µg 293T cell nuclear proteins or nuclear extracts from about 5,000 to 10,000 human BM CD34+ hematopoietic cells. Using this assay, we confirmed that human bone marrow HSCs (CD34+CD38− cells) are less proficient in the repair of DSBs by NHEJ than HPCs (CD34+CD38+ cells). In contrast, mouse quiescent HSCs (Pyronin-Ylow LKS+ cells) and cycling HSCs (Pyronin-Yhi LKS+ cells) repaired the damage more efficiently than HPCs (LKS− cells). The difference in the abilities of human and mouse HSCs and HPCs to repair DSBs through NHEJ is likely attributed to their differential expression of key NHEJ DNA damage repair genes such as LIG4. These findings suggest that the qPCR-based cell free in vitro NHEJ assay can be used to sensitively measure the ability of human and mouse HSCs to repair DSBs

    The spectrum of ATM missense variants and their contribution to contralateral breast cancer

    Get PDF
    Heterozygous carriers of ATM mutations are at increased risk of breast cancer. In this case-control study, we evaluated the significance of germline ATM missense variants to the risk of contralateral breast cancer (CBC). We have determined the spectrum and frequency of ATM missense variants in 443 breast cancer patients diagnosed before age 50, including 247 patients who subsequently developed CBC. Twenty-one per cent of the women with unilateral breast cancer and 17% of the women with CBC had at least one ATM germline missense variant, indicating no significant difference in variant frequency between these two groups. We have found that carriers of an ATM missense mutation, who were treated with radiotherapy for the first breast tumour, developed their second tumour on average in a 92-month interval compared to a 136-month mean interval for those CBC patients who neither received RT nor carried a germline variant, (p = 0.029). Our results indicate that the presence of ATM variants does not have a major impact on the overall risk of CBC. However, the combination of RT and (certain) ATM missense variants seems to accelerate tumour development

    Measurement of the branching fraction and CP content for the decay B(0) -> D(*+)D(*-)

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APS.We report a measurement of the branching fraction of the decay B0→D*+D*- and of the CP-odd component of its final state using the BABAR detector. With data corresponding to an integrated luminosity of 20.4  fb-1 collected at the Υ(4S) resonance during 1999–2000, we have reconstructed 38 candidate signal events in the mode B0→D*+D*- with an estimated background of 6.2±0.5 events. From these events, we determine the branching fraction to be B(B0→D*+D*-)=[8.3±1.6(stat)±1.2(syst)]×10-4. The measured CP-odd fraction of the final state is 0.22±0.18(stat)±0.03(syst).This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation

    Measurement of D-s(+) and D-s(*+) production in B meson decays and from continuum e(+)e(-) annihilation at √s=10.6 GeV

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APSNew measurements of Ds+ and Ds*+ meson production rates from B decays and from qq̅ continuum events near the Υ(4S) resonance are presented. Using 20.8 fb-1 of data on the Υ(4S) resonance and 2.6 fb-1 off-resonance, we find the inclusive branching fractions B(B⃗Ds+X)=(10.93±0.19±0.58±2.73)% and B(B⃗Ds*+X)=(7.9±0.8±0.7±2.0)%, where the first error is statistical, the second is systematic, and the third is due to the Ds+→φπ+ branching fraction uncertainty. The production cross sections σ(e+e-→Ds+X)×B(Ds+→φπ+)=7.55±0.20±0.34pb and σ(e+e-→Ds*±X)×B(Ds+→φπ+)=5.8±0.7±0.5pb are measured at center-of-mass energies about 40 MeV below the Υ(4S) mass. The branching fractions ΣB(B⃗Ds(*)+D(*))=(5.07±0.14±0.30±1.27)% and ΣB(B⃗Ds*+D(*))=(4.1±0.2±0.4±1.0)% are determined from the Ds(*)+ momentum spectra. The mass difference m(Ds+)-m(D+)=98.4±0.1±0.3MeV/c2 is also measured.This work was supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Swiss NSF, A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation

    The complete sequence of the Acacia ligulata chloroplast genome reveals a highly divergent clpP1 gene

    Get PDF
    Legumes are a highly diverse angiosperm family that include many agriculturally important species. To date, 21 complete chloroplast genomes have been sequenced from legume crops confined to the Papilionoideae subfamily. Here we report the first chloroplast genome from the Mimosoideae, Acacia ligulata, and compare it to the previously sequenced legume genomes. The A. ligulata chloroplast genome is 158,724 bp in size, comprising inverted repeats of 25,925 bp and single-copy regions of 88,576 bp and 18,298 bp. Acacia ligulata lacks the inversion present in many of the Papilionoideae, but is not otherwise significantly different in terms of gene and repeat content. The key feature is its highly divergent clpP1 gene, normally considered essential in chloroplast genomes. In A. ligulata, although transcribed and spliced, it probably encodes a catalytically inactive protein. This study provides a significant resource for further genetic research into Acacia and the Mimosoideae. The divergent clpP1 gene suggests that Acacia will provide an interesting source of information on the evolution and functional diversity of the chloroplast Clp protease comple

    Fluctuating Environments, Sexual Selection and the Evolution of Flexible Mate Choice in Birds

    Get PDF
    Environmentally-induced fluctuation in the form and strength of natural selection can drive the evolution of morphology, physiology, and behavior. Here we test the idea that fluctuating climatic conditions may also influence the process of sexual selection by inducing unexpected reversals in the relative quality or sexual attractiveness of potential breeding partners. Although this phenomenon, known as ‘ecological cross-over’, has been documented in a variety of species, it remains unclear the extent to which it has driven the evolution of major interspecific differences in reproductive behavior. We show that after controlling for potentially influential life history and demographic variables, there are significant positive associations between the variability and predictability of annual climatic cycles and the prevalence of infidelity and divorce within populations of a taxonomically diverse array of socially monogamous birds. Our results are consistent with the hypothesis that environmental factors have shaped the evolution of reproductive flexibility and suggest that in the absence of severe time constraints, secondary mate choice behaviors can help prevent, correct, or minimize the negative consequences of ecological cross-overs. Our findings also illustrate how a basic evolutionary process like sexual selection is susceptible to the increasing variability and unpredictability of climatic conditions that is resulting from climate change

    Paracellular Absorption: A Bat Breaks the Mammal Paradigm

    Get PDF
    Bats tend to have less intestinal tissue than comparably sized nonflying mammals. The corresponding reduction in intestinal volume and hence mass of digesta carried is advantageous because the costs of flight increase with load carried and because take-off and maneuverability are diminished at heavier masses. Water soluble compounds, such as glucose and amino acids, are absorbed in the small intestine mainly via two pathways, the transporter-mediated transcellular and the passive, paracellular pathways. Using the microchiropteran bat Artibeus literatus (mean mass 80.6±3.7 g), we tested the predictions that absorption of water-soluble compounds that are not actively transported would be extensive as a compensatory mechanism for relatively less intestinal tissue, and would decline with increasing molecular mass in accord with sieve-like paracellular absorption. Using a standard pharmacokinetic technique, we fed, or injected intraperitonealy the metabolically inert carbohydrates L-rhamnose (molecular mass = 164 Da) and cellobiose (molecular mass = 342 Da) which are absorbed only by paracellular transport, and 3-O-methyl-D-glucose (3OMD-glucose) which is absorbed via both mediated (active) and paracellular transport. As predicted, the bioavailability of paracellular probes declined with increasing molecular mass (rhamnose, 90±11%; cellobiose, 10±3%, n = 8) and was significantly higher in bats than has been reported for laboratory rats and other mammals. In addition, absorption of 3OMD-glucose was high (96±11%). We estimated that the bats rely on passive, paracellular absorption for more than 70% of their total glucose absorption, much more than in non-flying mammals. Although possibly compensating for less intestinal tissue, a high intestinal permeability that permits passive absorption might be less selective than a carrier-mediated system for nutrient absorption and might permit toxins to be absorbed from plant and animal material in the intestinal lumen

    Effects of the Distribution of Female Primates on the Number of Males

    Get PDF
    The spatiotemporal distribution of females is thought to drive variation in mating systems, and hence plays a central role in understanding animal behavior, ecology and evolution. Previous research has focused on investigating the links between female spatiotemporal distribution and the number of males in haplorhine primates. However, important questions remain concerning the importance of spatial cohesion, the generality of the pattern across haplorhine and strepsirrhine primates, and the consistency of previous findings given phylogenetic uncertainty. To address these issues, we examined how the spatiotemporal distribution of females influences the number of males in primate groups using an expanded comparative dataset and recent advances in Bayesian phylogenetic and statistical methods. Specifically, we investigated the effect of female distributional factors (female number, spatial cohesion, estrous synchrony, breeding season duration and breeding seasonality) on the number of males in primate groups. Using Bayesian approaches to control for uncertainty in phylogeny and the model of trait evolution, we found that the number of females exerted a strong influence on the number of males in primate groups. In a multiple regression model that controlled for female number, we found support for temporal effects, particularly involving female estrous synchrony: the number of males increases when females are more synchronously receptive. Similarly, the number of males increases in species with shorter birth seasons, suggesting that greater breeding seasonality makes defense of females more difficult for male primates. When comparing primate suborders, we found only weak evidence for differences in traits between haplorhines and strepsirrhines, and including suborder in the statistical models did not affect our conclusions or give compelling evidence for different effects in haplorhines and strepsirrhines. Collectively, these results demonstrate that male monopolization is driven primarily by the number of females in groups, and secondarily by synchrony of female reproduction within groups
    corecore