350 research outputs found

    Loss of idealism or realistic optimism? A cross‐sectional analysis of dental hygiene students’ and registered dental hygienists’ professional identity perceptions

    Full text link
    ObjectivesThe dental hygiene profession in the U.S. is in the process of establishing a direct access model of care and contributing to the creation of the profession of a dental therapist. The objectives were to analyse the professional role perceptions of dental hygiene students and registered dental hygienists in these times of change. Specifically, it was explored whether dental hygiene students’ current professional identities differ (i) from their expected future identities, and (ii) from dental hygienists’ current and (iii) past identities.MethodsSurvey data were collected from 215 dental hygiene students concerning their present and future role perceptions, and from 352 registered dental hygienists concerning their present and past professional identity perceptions.ResultsStudents’ future professional identity perceptions were even more positive than their very positive current perceptions of their professional role components. Students’ current perceptions of professional pride, professional ambition, work ethic and patient relations were more positive than dental hygienists’ current perceptions of these professional role components. A comparison of students’ current perceptions with dental hygienists’ current and retrospective descriptions showed that students were more positive than dental hygienists in each case.ConclusionsThe fact that dental hygienists had less positive role perceptions than dental hygiene students might lead to the conclusion that a loss of idealism occurs over the course of a professional lifespan. However, dental hygienists actually improved their role perceptions over time and students’ future descriptions were more positive than their current descriptions, supporting the interpretation that realistic optimism dominates professional role perceptions in these times of change.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141357/1/idh12287_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141357/2/idh12287.pd

    Can Reproductive Health Voucher Programs Improve Quality of Postnatal Care? A Quasi-Experimental Evaluation of Kenya’s Safe Motherhood Voucher Scheme

    Get PDF
    This study tests the group-level causal relationship between the expansion of Kenya’s Safe Motherhood voucher program and changes in quality of postnatal care (PNC) provided at voucher-contracted facilities. We compare facilities accredited since program inception in 2006 (phase I) and facilities accredited since 2010-2011 (phase II) relative to comparable non-voucher facilities. PNC quality is assessed using observed clinical content processes, as well as client-reported outcome measures. Two-tailed unpaired t-tests are used to identify differences in mean process quality scores and client-reported outcome measures, comparing changes between intervention and comparison groups at the 2010 and 2012 data collection periods. Difference-in-differences analysis is used to estimate the reproductive health (RH) voucher program’s causal effect on quality of care by exploiting group-level differences between voucher-accredited and non-accredited facilities in 2010 and 2012. Participation in the voucher scheme since 2006 significantly improves overall quality of postnatal care by 39% (p=0.02), where quality is defined as the observable processes or components of service provision that occur during a PNC consultation. Program participation since phase I is estimated to improve the quality of observed maternal postnatal care by 86% (p=0.02), with the largest quality improvements in counselling on family planning methods (IRR 5.0; p=0.01) and return to fertility (IRR 2.6; p=0.01). Despite improvements in maternal aspects of PNC, we find a high proportion of mothers who seek PNC are not being checked by any provider after delivery. Additional strategies will be necessary to standardize provision of packaged postnatal interventions to both mother and new-born. This study addresses an important gap in the existing RH literature by using a strong evaluation design to assess RH voucher program effectiveness on quality improvement

    M5-branes from gauge theories on the 5-sphere

    Get PDF
    We use the 5-sphere partition functions of supersymmetric Yang-Mills theories to explore the (2,0) superconformal theory on S^5 x S^1. The 5d theories can be regarded as Scherk-Schwarz reductions of the 6d theory along the circle. In a special limit, the perturbative partition function takes the form of the Chern-Simons partition function on S^3. With a simple non-perturbative completion, it becomes a 6d index which captures the degeneracy of a sector of BPS states as well as the index version of the vacuum Casimir energy. The Casimir energy exhibits the N^3 scaling at large N. The large N index for U(N) gauge group also completely agrees with the supergravity index on AdS_7 x S^4.Comment: 44 pages, 1 figure, v4: ref added, clarified weak/strong coupling behaviors of large N free energy, minor improvements, version to be published in JHE

    On instantons as Kaluza-Klein modes of M5-branes

    Full text link
    Instantons and W-bosons in 5d maximally supersymmetric Yang-Mills theory arise from a circle compactification of the 6d (2,0) theory as Kaluza-Klein modes and winding self-dual strings, respectively. We study an index which counts BPS instantons with electric charges in Coulomb and symmetric phases. We first prove the existence of unique threshold bound state of (noncommutative) U(1) instantons for any instanton number, and also show that charged instantons in the Coulomb phase correctly give the degeneracy of SU(2) self-dual strings. By studying SU(N) self-dual strings in the Coulomb phase, we find novel momentum-carrying degrees on the worldsheet. The total number of these degrees equals the anomaly coefficient of SU(N) (2,0) theory. We finally show that our index can be used to study the symmetric phase of this theory, and provide an interpretation as the superconformal index of the sigma model on instanton moduli space.Comment: 54 pages, 2 figures. v2: references added, figure improved, added comments on self-dual string anomaly, added new materials on the symmetric phase index, other minor correction

    Rapid dissection and model-based optimization of inducible enhancers in human cells using a massively parallel reporter assay

    Get PDF
    Learning to read and write the transcriptional regulatory code is of central importance to progress in genetic analysis and engineering. Here we describe a massively parallel reporter assay (MPRA) that facilitates the systematic dissection of transcriptional regulatory elements. In MPRA, microarray-synthesized DNA regulatory elements and unique sequence tags are cloned into plasmids to generate a library of reporter constructs. These constructs are transfected into cells and tag expression is assayed by high-throughput sequencing. We apply MPRA to compare >27,000 variants of two inducible enhancers in human cells: a synthetic cAMP-regulated enhancer and the virus-inducible interferon-β enhancer. We first show that the resulting data define accurate maps of functional transcription factor binding sites in both enhancers at single-nucleotide resolution. We then use the data to train quantitative sequence-activity models (QSAMs) of the two enhancers. We show that QSAMs from two cellular states can be combined to design enhancer variants that optimize potentially conflicting objectives, such as maximizing induced activity while minimizing basal activity.National Human Genome Research Institute (U.S.) (grant R01HG004037)National Science Foundation (U.S.) ((NSF) grant PHY-0957573)National Science Foundation (U.S.) (NSF grant PHY-1022140)Broad Institut

    Fermionic Coset, Critical Level W^(2)_4-Algebra and Higher Spins

    Full text link
    The fermionic coset is a limit of the pure spinor formulation of the AdS5xS5 sigma model as well as a limit of a nonlinear topological A-model, introduced by Berkovits. We study the latter, especially its symmetries, and map them to higher spin algebras. We show the following. The linear A-model possesses affine \AKMSA{pgl}{4}{4}_0 symmetry at critical level and its \AKMSA{psl}{4}{4}_0 current-current perturbation is the nonlinear model. We find that the perturbation preserves W4(2)\mathcal{W}^{(2)}_4-algebra symmetry at critical level. There is a topological algebra associated to \AKMSA{pgl}{4}{4}_0 with the properties that the perturbation is BRST-exact. Further, the BRST-cohomology contains world-sheet supersymmetric symplectic fermions and the non-trivial generators of the W4(2)\mathcal{W}^{(2)}_4-algebra. The Zhu functor maps the linear model to a higher spin theory. We analyze its \SLSA{psl}{4}{4} action and find finite dimensional short multiplets.Comment: 25 page

    Lambda and Antilambda polarization from deep inelastic muon scattering

    Full text link
    We report results of the first measurements of Lambda and Antilambda polarization produced in deep inelastic polarized muon scattering on the nucleon. The results are consistent with an expected trend towards positive polarization with increasing x_F. The polarizations of Lambda and Antilambda appear to have opposite signs. A large negative polarization for Lambda at low positive x_F is observed and is not explained by existing models.A possible interpretation is presented.Comment: 9 pages, 2 figure

    Comparative analysis of carboxysome shell proteins

    Get PDF
    Carboxysomes are metabolic modules for CO2 fixation that are found in all cyanobacteria and some chemoautotrophic bacteria. They comprise a semi-permeable proteinaceous shell that encapsulates ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and carbonic anhydrase. Structural studies are revealing the integral role of the shell protein paralogs to carboxysome form and function. The shell proteins are composed of two domain classes: those with the bacterial microcompartment (BMC; Pfam00936) domain, which oligomerize to form (pseudo)hexamers, and those with the CcmL/EutN (Pfam03319) domain which form pentamers in carboxysomes. These two shell protein types are proposed to be the basis for the carboxysome’s icosahedral geometry. The shell proteins are also thought to allow the flux of metabolites across the shell through the presence of the small pore formed by their hexameric/pentameric symmetry axes. In this review, we describe bioinformatic and structural analyses that highlight the important primary, tertiary, and quaternary structural features of these conserved shell subunits. In the future, further understanding of these molecular building blocks may provide the basis for enhancing CO2 fixation in other organisms or creating novel biological nanostructures
    corecore