174 research outputs found

    Functional expression of NF1 tumor suppressor protein: association with keratin intermediate filaments during the early development of human epidermis

    Get PDF
    BACKGROUND: NF1 refers to type 1 neurofibromatosis syndrome, which has been linked with mutations of the large NF1 gene. NF1 tumor suppressor protein, neurofibromin, has been shown to regulate ras: the NF1 protein contains a GTPase activating protein (GAP) related domain which functions as p21rasGAP. Our studies have previously demonstrated that the NF1 protein forms a high affinity association with cytokeratin 14 during the formation of desmosomes and hemidesmosomes in cultured keratinocytes. METHODS: The expression of NF1 protein was studied in developing human epidermis using western transfer analysis, indirect immunofluorescence, confocal laser scanning microscopy, immunoelectron microscopy, and in situ hybridization. RESULTS: The expression of NF1 protein was noted to be highly elevated in the periderm at 8 weeks estimated gestational age (EGA) and in the basal cells at 8–14 weeks EGA. During this period, NF1 protein was associated with cytokeratin filaments terminating to desmosomes and hemidesmosomes. NF1 protein did not display colocalization with α-tubulin or actin of the cytoskeleton, or with adherens junction proteins. CONCLUSIONS: These results depict an early fetal period when the NF1 tumor suppressor is abundantly expressed in epidermis and associated with cytokeratin filaments. This period is characterized by the initiation of differentiation of the basal cells, maturation of the basement membrane zone as well as accentuated formation of selected cellular junctions. NF1 tumor suppressor may function in the regulation of epidermal histogenesis via controlling the organization of the keratin cytoskeleton during the assembly of desmosomes and hemidesmosomes

    Swordtail Fry Attend to Chemical and Visual Cues in Detecting Predators and Conspecifics

    Get PDF
    Predation pressure and energy requirements present particularly salient opposing selective pressures on young fish. Thus, fry are expected to possess sophisticated means of detecting predators and resources. Here we tested the hypotheses that fry of the swordtail fish Xiphophorus birchmanni use chemical and visual cues in detection of predators and conspecifics. To test these hypotheses we presented young (<7 day-old) fry with combinations of visual and chemical stimuli from adult conspecifics and predators. We found that exposure to predator odors resulted in shoal tightening similar to that observed when fry were presented with visual cues alone. In trials with conspecific stimuli, fry were particularly attracted to adult conspecifics when presented simultaneous visual and chemical stimuli compared to the visual stimulus alone. These results show that fry attend to the odors of adult conspecifics, whose presence in a particular area may signal the location of resources as well as an absence of predators. This is one of the first studies to show that such young fish use chemical and visual cues in predator detection and in interactions with conspecifics. Previous research in X. birchmanni has shown that anthropogenic alteration of the chemical environment disrupts intraspecific chemical communication among adults; we suggest that because fry use the same chemosensory pathways to detect predators and conspecifics, alteration of the chemical environment may critically disrupt predator and resource detection

    Dopamine D2 receptor polymorphisms and susceptibility to alcohol dependence in Indian males: a preliminary study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dopamine is an important neurotransmitter involved in reward mechanism in the brain and thereby influences development and relapse of alcohol dependence. The dopamine D2 receptor (<it>DRD2</it>) gene on chromosome 11 (q22-q23) has been found to be associated with increased alcohol consumption through mechanisms involving incentive salience attributions and craving in alcoholic patients. Therefore, we investigated the association of three single nucleotide polymorphisms (SNP) in <it>DRD2 </it>gene with alcohol dependence in the north Indian subjects.</p> <p>Methods</p> <p>In a retrospective analysis, genetic association of three polymorphisms from <it>DRD2 </it>gene with alcohol dependence was investigated using a case-control approach. Alcohol dependence was determined by DSM-IV criteria and a total of 90 alcoholics and 60 healthy unrelated age-matched control subjects were recruited. Odds ratio and confidence interval was calculated to determine risk conferred by a predisposing allele/genotype/haplotype. Logistic regression analysis was carried out to correlate various clinical parameters with genotypes, and to study pair-wise interactions between SNPs.</p> <p>Results</p> <p>The study showed a significant association of -141C Ins allele and a trend of association of TaqI A1 allele of <it>DRD2 </it>with alcohol dependence. Haplotype with the predisposing -141C Ins and TaqI A1 alleles (-141C Ins-A-A1) seems to confer ≈ 2.5 times more risk to develop alcohol dependence.</p> <p>Conclusions</p> <p>The study provides preliminary insight into genetic risk to alcohol dependence in Indian males. Two polymorphisms namely, -141C Ins/Del and TaqI A in <it>DRD2 </it>gene may have clinical implications among Indian alcoholic subjects.</p

    Amyloids - A functional coat for microorganisms

    Get PDF
    Amyloids are filamentous protein structures ~10 nm wide and 0.1–10 µm long that share a structural motif, the cross-β structure. These fibrils are usually associated with degenerative diseases in mammals. However, recent research has shown that these proteins are also expressed on bacterial and fungal cell surfaces. Microbial amyloids are important in mediating mechanical invasion of abiotic and biotic substrates. In animal hosts, evidence indicates that these protein structures also contribute to colonization by activating host proteases that are involved in haemostasis, inflammation and remodelling of the extracellular matrix. Activation of proteases by amyloids is also implicated in modulating blood coagulation, resulting in potentially life-threatening complications.

    Analysis of arterial intimal hyperplasia: review and hypothesis

    Get PDF
    which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background: Despite a prodigious investment of funds, we cannot treat or prevent arteriosclerosis and restenosis, particularly its major pathology, arterial intimal hyperplasia. A cornerstone question lies behind all approaches to the disease: what causes the pathology? Hypothesis: I argue that the question itself is misplaced because it implies that intimal hyperplasia is a novel pathological phenomenon caused by new mechanisms. A simple inquiry into arterial morphology shows the opposite is true. The normal multi-layer cellular organization of the tunica intima is identical to that of diseased hyperplasia; it is the standard arterial system design in all placentals at least as large as rabbits, including humans. Formed initially as one-layer endothelium lining, this phenotype can either be maintained or differentiate into a normal multi-layer cellular lining, so striking in its resemblance to diseased hyperplasia that we have to name it &quot;benign intimal hyperplasia&quot;. However, normal or &quot;benign &quot; intimal hyperplasia, although microscopically identical to pathology, is a controllable phenotype that rarely compromises blood supply. It is remarkable that each human heart has coronary arteries in which a single-layer endothelium differentiates earl

    Association between Dopamine Receptor D2 (DRD2) Variations rs6277 and rs1800497 and Cognitive Performance According to Risk Type for Psychosis : A Nested Case Control Study in a Finnish Population Sample

    Get PDF
    Background There is limited research regarding the association between genes and cognitive intermediate phenotypes in those at risk for psychotic disorders. Methods We measured the association between established psychosis risk variants in dopamine D2 receptor (DRD2) and cognitive performance in individuals at age 23 years and explored if associations between cognition and these variants differed according to the presence of familial or clinical risk for psychosis. The subjects of the Oulu Brain and Mind Study were drawn from the general population-based Northern Finland 1986 Birth Cohort (NFBC 1986). Using linear regression, we compared the associations between cognitive performance and two candidate DRD2 polymorphisms (rs6277 and rs1800497) between subjects having familial (n=61) and clinical (n=45) risk for psychosis and a random sample of participating NFBC 1986 controls (n=74). Cognitive performance was evaluated using a comprehensive battery of tests at follow-up. Results Principal components factor analysis supported a three-factor model for cognitive measures. The minor allele of rs6277 was associated with poorer performance on a verbal factor (p=0.003) but this did not significantly interact with familial or clinical risk for psychosis. The minor allele of rs1800497 was associated with poorer performance on a psychomotor factor (p=0.038), though only in those at familial risk for psychotic disorders (interaction p=0.049). Conclusion The effect of two DRD2 SNPs on cognitive performance may differ according to risk type for psychosis, suggesting that cognitive intermediate phenotypes differ according to the type (familial or clinical) risk for psychosis.Peer reviewe

    Anaerobic performance in masters athletes

    Full text link

    Abridged version of the AWMF guideline for the medical clinical diagnostics of indoor mould exposure

    Get PDF

    Hometalomikrobien terveyshaittojen mekanismit

    No full text
    corecore