19 research outputs found

    Clinical and genetic spectrum in 33 Egyptian families with suspected primary ciliary dyskinesia

    Get PDF
    Primary ciliary dyskinesia (PCD) is a rare genetic disorder of motile cilia dysfunction generally inherited as an autosomal recessive disease. Genetic testing is increasingly considered an early step in the PCD diagnostic workflow. We used targeted panel next generation sequencing (NGS) for genetic screening of 33 Egyptian families with highly clinically suspected PCD. All variants prioritized were Sanger confirmed in the affected individuals and correctly segregated within the family. Targeted NGS yielded a high diagnostic output (70%) with bi‐allelic mutations identified in known PCD genes. Mutations were identified in 13 genes overall, with CCDC40 and CCDC39 the most frequently mutated genes among Egyptian patients. Most identified mutations were predicted null effect variants (79%) and not reported before (85%). This study reveals that the genetic landscape of PCD among Egyptians is highly heterogeneous, indicating that a targeted NGS approach covering multiple genes will provide a superior diagnostic yield than Sanger sequencing for genetic diagnosis. The high diagnostic output achieved here highlights the potential of placing genetic testing early within the diagnostic workflow for PCD, in particular in developing countries where other diagnostic tests can be less available

    CFAP300 mutation causing primary ciliary dyskinesia in Finland

    Get PDF
    Primary ciliary dyskinesia (PCD) is a rare genetic condition characterized by chronic respiratory tract infections and in some cases laterality defects and infertility. The symptoms of PCD are caused by malfunction of motile cilia, hair-like organelles protruding out of the cell that are responsible for removal of mucus from the airways and organizing internal organ positioning during embryonic development. PCD is caused by mutations in genes coding for structural or assembly proteins in motile cilia. Thus far mutations in over 50 genes have been identified and these variants explain around 70% of all known cases. Population specific genetics underlying PCD has been reported, thus highlighting the importance of characterizing gene variants in different populations for development of gene-based diagnostics. In this study, we identified a recurrent loss-of-function mutation c.198_200delinsCC in CFAP300 causing lack of the protein product. PCD patients homozygous for the identified CFAP300 mutation have immotile airway epithelial cilia associated with missing dynein arms in their ciliary axonemes. Furthermore, using super resolution microscopy we demonstrate that CFAP300 is transported along cilia in normal human airway epithelial cells suggesting a role for CFAP300 in dynein complex transport in addition to preassembly in the cytoplasm. Our results highlight the importance of CFAP300 in dynein arm assembly and improve diagnostics of PCD in Finland

    Clinical, biochemical, and genetic spectrum of MADD in a South African cohort: an ICGNMD study

    Get PDF
    \ua9 2024, The Author(s).Background: Multiple acyl-CoA dehydrogenase deficiency (MADD) is an autosomal recessive disorder resulting from pathogenic variants in three distinct genes, with most of the variants occurring in the electron transfer flavoprotein-ubiquinone oxidoreductase gene (ETFDH). Recent evidence of potential founder variants for MADD in the South African (SA) population, initiated this extensive investigation. As part of the International Centre for Genomic Medicine in Neuromuscular Diseases study, we recruited a cohort of patients diagnosed with MADD from academic medical centres across SA over a three-year period. The aim was to extensively profile the clinical, biochemical, and genomic characteristics of MADD in this understudied population. Methods: Clinical evaluations and whole exome sequencing were conducted on each patient. Metabolic profiling was performed before and after treatment, where possible. The recessive inheritance and phase of the variants were established via segregation analyses using Sanger sequencing. Lastly, the haplotype and allele frequencies were determined for the two main variants in the four largest SA populations. Results: Twelve unrelated families (ten of White SA and two of mixed ethnicity) with clinically heterogeneous presentations in 14 affected individuals were observed, and five pathogenic ETFDH variants were identified. Based on disease severity and treatment response, three distinct groups emerged. The most severe and fatal presentations were associated with the homozygous c.[1067G > A];c.[1067G > A] and compound heterozygous c.[976G > C];c.[1067G > A] genotypes, causing MADD types I and I/II, respectively. These, along with three less severe compound heterozygous genotypes (c.[1067G > A];c.[1448C > T], c.[740G > T];c.[1448C > T], and c.[287dupA*];c.[1448C > T]), resulting in MADD types II/III, presented before the age of five years, depending on the time and maintenance of intervention. By contrast, the homozygous c.[1448C > T];c.[1448C > T] genotype, which causes MADD type III, presented later in life. Except for the type I, I/II and II cases, urinary metabolic markers for MADD improved/normalised following treatment with riboflavin and L-carnitine. Furthermore, genetic analyses of the most frequent variants (c.[1067G > A] and c.[1448C > T]) revealed a shared haplotype in the region of ETFDH, with SA population-specific allele frequencies of < 0.00067–0.00084%. Conclusions: This study reveals the first extensive genotype–phenotype profile of a MADD patient cohort from the diverse and understudied SA population. The pathogenic variants and associated variable phenotypes were characterised, which will enable early screening, genetic counselling, and patient-specific treatment of MADD in this population

    Topological data analysis reveals genotype-phenotype relationships in primary ciliary dyskinesia

    Get PDF
    Background: Primary ciliary dyskinesia (PCD) is a heterogeneous inherited disorder caused by mutations in approximately 50 cilia-related genes. PCD genotype-phenotype relationships have mostly arisen from small case series because existing statistical approaches to investigate relationships have been unsuitable for rare diseases. / Methods: We applied a topological data analysis (TDA) approach to investigate genotype-phenotype relationships in PCD. Data from separate training and validation cohorts included 396 genetically defined individuals carrying pathogenic variants in PCD genes. To develop the TDA models, twelve clinical and diagnostic variables were included. TDA-driven hypotheses were subsequently tested using traditional statistics. / Results: Disease severity at diagnosis measured by FEV1 z-score was (i) significantly worse in individuals with CCDC39 mutations compared to other gene mutations and (ii) better in those with DNAH11 mutations; the latter also reported less neonatal respiratory distress. Patients without neonatal respiratory distress had better preserved FEV1 at diagnosis. Individuals with DNAH5 mutations were phenotypically diverse. Cilia ultrastructure and beat pattern defects correlated closely to specific causative gene groups, confirming these tests can be used to support a genetic diagnosis. / Conclusions: This large scale multi-national study presents PCD as a syndrome with overlapping symptoms and variation in phenotype, according to genotype. TDA modelling confirmed genotype-phenotype relationships reported by smaller studies (e.g. FEV1 worse with CCDC39 mutations), and identified new relationships, including FEV1 preservation with DNAH11 mutations and diversity of severity with DNAH5 mutations

    Primary Ciliary Dyskinesia Due to Microtubular Defects is Associated with Worse Lung Clearance Index

    Get PDF
    PURPOSE: Primary ciliary dyskinesia (PCD) is characterised by repeated upper and lower respiratory tract infections, neutrophilic airway inflammation and obstructive airway disease. Different ultrastructural ciliary defects may affect lung function decline to different degrees. Lung clearance index (LCI) is a marker of ventilation inhomogeneity that is raised in some but not all patients with PCD. We hypothesised that PCD patients with microtubular defects would have worse (higher) LCI than other PCD patients. METHODS: Spirometry and LCI were measured in 69 stable patients with PCD. Age at testing, age at diagnosis, ethnicity, ciliary ultrastructure, genetic screening result and any growth of Pseudomonas aeruginosa was recorded. RESULTS: Lung clearance index was more abnormal in PCD patients with microtubular defects (median 10.24) than those with dynein arm defects (median 8.3, p = 0.004) or normal ultrastructure (median 7.63, p = 0.0004). Age is correlated with LCI, with older patients having worse LCI values (p = 0.03, r = 0.3). CONCLUSION: This study shows that cilia microtubular defects are associated with worse LCI in PCD than dynein arm defects or normal ultrastructure. The patient's age at testing is also associated with a higher LCI. Patients at greater risk of obstructive lung disease should be considered for more aggressive management. Differences between patient groups may potentially open avenues for novel treatments

    Risk factors for situs defects and congenital heart disease in primary ciliary dyskinesia

    Get PDF
    Primary ciliary dyskinesia (PCD) is associated with abnormal organ positioning (situs) and congenital heart disease (CHD). This study investigated genotype-phenotype associations in PCD to facilitate risk predictions for cardiac and laterality defects. This retrospective cohort study of 389 UK patients with PCD found 51% had abnormal situs and 25% had CHD and/or laterality defects other than situs inversus totalis. Patients with biallelic mutations in a subset of nine PCD genes had normal situs. Patients with consanguineous parents had higher odds of situs abnormalities than patients with non-consanguineous parents. Patients with abnormal situs had higher odds of CHD and/or laterality defects

    Proceedings of the 4<sup>th</sup>BEAT-PCD Conference and 5<sup>th</sup>PCD Training School

    Get PDF
    Primary ciliary dyskinesia (PCD) is an inherited ciliopathy leading to chronic suppurative lung disease, chronic rhinosinusitis, middle ear disease, sub-fertility and situs abnormalities. As PCD is rare, it is important that scientists and clinicians foster international collaborations to share expertise in order to provide the best possible diagnostic and management strategies. ‘Better Experimental Approaches to Treat Primary Ciliary Dyskinesia’ (BEAT-PCD) is a multidisciplinary network funded by EU COST Action (BM1407) to coordinate innovative basic science and clinical research from across the world to drive advances in the field. The fourth and final BEAT-PCD Conference and fifth PCD Training School were held jointly in March 2019 in Poznan, Poland. The varied program of plenaries, workshops, break-out sessions, oral and poster presentations were aimed to enhance the knowledge and skills of delegates, whilst also providing a collaborative platform to exchange ideas. In this final BEAT-PCD conference we were able to build upon programmes developed throughout the lifetime of the COST Action. These proceedings report on the conference, highlighting some of the successes of the BEAT-PCD programme

    Digenic inheritance involving a muscle-specific protein kinase and the giant titin protein causes a skeletal muscle myopathy.

    Get PDF
    In digenic inheritance, pathogenic variants in two genes must be inherited together to cause disease. Only very few examples of digenic inheritance have been described in the neuromuscular disease field. Here we show that predicted deleterious variants in SRPK3, encoding the X-linked serine/argenine protein kinase 3, lead to a progressive early onset skeletal muscle myopathy only when in combination with heterozygous variants in the TTN gene. The co-occurrence of predicted deleterious SRPK3/TTN variants was not seen among 76,702 healthy male individuals, and statistical modeling strongly supported digenic inheritance as the best-fitting model. Furthermore, double-mutant zebrafish (srpk3-/-; ttn.1+/-) replicated the myopathic phenotype and showed myofibrillar disorganization. Transcriptome data suggest that the interaction of srpk3 and ttn.1 in zebrafish occurs at a post-transcriptional level. We propose that digenic inheritance of deleterious changes impacting both the protein kinase SRPK3 and the giant muscle protein titin causes a skeletal myopathy and might serve as a model for other genetic diseases

    High prevalence of CCDC103 p.His154Pro mutation causing primary ciliary dyskinesia disrupts protein oligomerisation and is associated with normal diagnostic investigations

    Get PDF
    Rationale Primary ciliary dyskinesia is a genetically heterogeneous inherited condition characterised by progressive lung disease arising from abnormal cilia function. Approximately half of patients have situs inversus. The estimated prevalence of primary ciliary dyskinesia in the UK South Asian population is 1:2265. Early, accurate diagnosis is key to implementing appropriate management but clinical diagnostic tests can be equivocal. Objectives To determine the importance of genetic screening for primary ciliary dyskinesia in a UK South Asian population with a typical clinical phenotype, where standard testing is inconclusive. Methods Next-generation sequencing was used to screen 86 South Asian patients who had a clinical history consistent with primary ciliary dyskinesia. The effect of a CCDC103 p.His154Pro missense variant compared with other dynein arm-associated gene mutations on diagnostic/phenotypic variability was tested. CCDC103 p.His154Pro variant pathogenicity was assessed by oligomerisation assay. Results Sixteen of 86 (19%) patients carried a homozygous CCDC103 p.His154Pro mutation which was found to disrupt protein oligomerisation. Variable diagnostic test results were obtained including normal nasal nitric oxide levels, normal ciliary beat pattern and frequency and a spectrum of partial and normal dynein arm retention. Fifteen (94%) patients or their sibling(s) had situs inversus suggesting CCDC103 p.His154Pro patients without situs inversus are missed. Conclusions The CCDC103 p.His154Pro mutation is more prevalent than previously thought in the South Asian community and causes primary ciliary dyskinesia that can be difficult to diagnose using pathology-based clinical tests. Genetic testing is critical when there is a strong clinical phenotype with inconclusive standard diagnostic tests
    corecore