20 research outputs found

    Thermal strategies of king penguins during prolonged fasting in water

    Get PDF
    Most animals experience periods of unfavourable conditions, challenging their daily energy balance. During breeding, king penguins fast voluntarily for up to 1.5 months in the colony, after which they replenish their energy stores at sea. However, at sea, birds might encounter periods of low foraging profitability, forcing them to draw from previously stored energy (e.g. subcutaneous fat). Accessing peripheral fat stores requires perfusion, increasing heat loss and thermoregulatory costs. Hence, how these birds balance the conflicting demands of nutritional needs and thermoregulation is unclear. We investigated the physiological responses of king penguins to fasting in cold water by: (1) monitoring tissue temperatures, as a proxy of tissue perfusion, at four distinct sites (deep and peripheral); and (2) recording their oxygen consumption rate while birds floated inside a water tank. Despite frequent oscillations, temperatures of all tissues often reached near-normothermic levels, indicating that birds maintained perfusion to peripheral tissues throughout their fasting period in water. The oxygen consumption rate of birds increased with fasting duration in water, while it was also higher when the flank tissue was warmer, indicating greater perfusion. Hence, fasting king penguins in water maintained peripheral perfusion, despite the associated greater heat loss and, therefore, thermoregulatory costs, probably to access subcutaneous fat stores. Hence, the observed normothermia in peripheral tissues of king penguins at sea, upon completion of a foraging bout, is likely explained by their nutritional needs: depositing free fatty acids (FFA) in subcutaneous tissues after profitable foraging or mobilizing FFA to fuel metabolism when foraging success was insufficient

    Measuring Energy Expenditure in Sub-Adult and Hatchling Sea Turtles via Accelerometry

    Get PDF
    Measuring the metabolic of sea turtles is fundamental to understanding their ecology yet the presently available methods are limited. Accelerometry is a relatively new technique for estimating metabolic rate that has shown promise with a number of species but its utility with air-breathing divers is not yet established. The present study undertakes laboratory experiments to investigate whether rate of oxygen uptake (o2) at the surface in active sub-adult green turtles Chelonia mydas and hatchling loggerhead turtles Caretta caretta correlates with overall dynamic body acceleration (ODBA), a derivative of acceleration used as a proxy for metabolic rate. Six green turtles (25–44 kg) and two loggerhead turtles (20 g) were instrumented with tri-axial acceleration logging devices and placed singly into a respirometry chamber. The green turtles were able to submerge freely within a 1.5 m deep tank and the loggerhead turtles were tethered in water 16 cm deep so that they swam at the surface. A significant prediction equation for mean o2 over an hour in a green turtle from measures of ODBA and mean flipper length (R2 = 0.56) returned a mean estimate error across turtles of 8.0%. The range of temperatures used in the green turtle experiments (22–30°C) had only a small effect on o2. A o2-ODBA equation for the loggerhead hatchling data was also significant (R2 = 0.67). Together these data indicate the potential of the accelerometry technique for estimating energy expenditure in sea turtles, which may have important applications in sea turtle diving ecology, and also in conservation such as assessing turtle survival times when trapped underwater in fishing nets

    Fastloc-GPS reveals daytime departure and arrival during long-distance migration and the use of different resting strategies in sea turtles

    Get PDF
    Determining the time of day that animals initiate and end migration, as well as variation in diel movement patterns during migration, provides insights into the types of strategy used to maximise energy efficiency and ensure successful completion of migration. However, obtaining this level of detail has been difficult for long-distance migratory marine species. Thus, we investigated whether the large volume of highly accurate locations obtained by Argos-linked Fastloc-GPS transmitters could be used to identify the time of day that adult green (n = 8 turtles, 9487 locations) and loggerhead (n = 46 turtles, 47,588 locations) sea turtles initiate and end migration, along with potential resting strategies during migration. We found that departure from and arrival at breeding, stopover and foraging sites consistently occurred during the daytime, which is consistent with previous findings suggesting that turtles might use solar visual cues for orientation. Only seven turtles made stopovers (of up to 6 days and all located close to the start or end of migration) during migration, possibly to rest and/or refuel; however, observations of day versus night speed of travel indicated that turtles might use other mechanisms to rest. For instance, turtles travelled 31% slower at night compared to day during their oceanic crossings. Furthermore, within the first 24 h of entering waters shallower than 100 m towards the end of migration, some individuals travelled 72% slower at night, repeating this behaviour intermittently (each time for a one-night duration at 3–6 day intervals) until reaching the foraging grounds. Thus, access to data-rich, highly accurate Argos-linked Fastloc-GPS provided information about differences in day versus night activity at different stages in migration, allowing us, for the first time, to compare the strategies used by a marine vertebrate with terrestrial land-based and flying species

    Modelling the effects of prey size and distribution on prey capture rates of two sympatric marine predators

    Get PDF
    Understanding how prey capture rates are influenced by feeding ecology and environmental conditions is fundamental to assessing anthropogenic impacts on marine higher predators. We compared how prey capture rates varied in relation to prey size, prey patch distribution and prey density for two species of alcid, common guillemot (Uria aalge) and razorbill (Alca torda) during the chick-rearing period. We developed a Monte Carlo approach parameterised with foraging behaviour from birdborne data loggers, observations of prey fed to chicks, and adult diet from wateroffloading, to construct a bio-energetics model. Our primary goal was to estimate prey capture rates, and a secondary aim was to test responses to a set of biologically plausible environmental scenarios. Estimated prey capture rates were 1.5±0.8 items per dive (0.8±0.4 and 1.1±0.6 items per minute foraging and underwater, respectively) for guillemots and 3.7±2.4 items per dive (4.9±3.1 and 7.3±4.0 items per minute foraging and underwater, respectively) for razorbills. Based on species' ecology, diet and flight costs, we predicted that razorbills would be more sensitive to decreases in 0- group sandeel (Ammodytes marinus) length (prediction 1), but guillemots would be more sensitive to prey patches that were more widely spaced (prediction 2), and lower in prey density (prediction 3). Estimated prey capture rates increased non-linearly as 0- group sandeel length declined, with the slope being steeper in razorbills, supporting prediction 1. When prey patches were more dispersed, estimated daily energy expenditure increased by a factor of 3.0 for guillemots and 2.3 for razorbills, suggesting guillemots were more sensitive to patchier prey, supporting prediction 2. However, both species responded similarly to reduced prey density (guillemot expenditure increased by 1.7; razorbill by 1.6), thus not supporting prediction 3. This bio-energetics approach complements other foraging models in predicting likely impacts of environmental change on marine higher predators dependent on species-specific foraging ecologies
    corecore