87 research outputs found

    Phase structure of black branes in grand canonical ensemble

    Full text link
    This is a companion paper of our previous work [1] where we studied the thermodynamics and phase structure of asymptotically flat black pp-branes in a cavity in arbitrary dimensions DD in a canonical ensemble. In this work we study the thermodynamics and phase structure of the same in a grand canonical ensemble. Since the boundary data in two cases are different (for the grand canonical ensemble boundary potential is fixed instead of the charge as in canonical ensemble) the stability analysis and the phase structure in the two cases are quite different. In particular, we find that there exists an analog of one-variable analysis as in canonical ensemble, which gives the same stability condition as the rather complicated known (but generalized from black holes to the present case) two-variable analysis. When certain condition for the fixed potential is satisfied, the phase structure of charged black pp-branes is in some sense similar to that of the zero charge black pp-branes in canonical ensemble up to a certain temperature. The new feature in the present case is that above this temperature, unlike the zero-charge case, the stable brane phase no longer exists and `hot flat space' is the stable phase here. In the grand canonical ensemble there is an analog of Hawking-Page transition, even for the charged black pp-brane, as opposed to the canonical ensemble. Our study applies to non-dilatonic as well as dilatonic black pp-branes in DD space-time dimensions.Comment: 32 pages, 2 figures, various points refined, discussion expanded, references updated, typos corrected, published in JHEP 1105:091,201

    A multi-region assessment of population rates of cardiac catheterization and yield of high-risk coronary artery disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is variation in cardiac catheterization utilization across jurisdictions. Previous work from Alberta, Canada, showed no evidence of a plateau in the yield of high-risk disease at cardiac catheterization rates as high as 600 per 100,000 population suggesting that the optimal rate is higher. This work aims 1) To determine if a previously demonstrated linear relationship between the yield of high-risk coronary disease and cardiac catheterization rates persists with contemporary data and 2) to explore whether the linear relationship exists in other jurisdictions.</p> <p>Methods</p> <p>Detailed clinical information on all patients undergoing cardiac catheterization in 3 Canadian provinces was available through the Alberta Provincial Project for Outcomes Assessment in Coronary Heart (APPROACH) disease and partner initiatives in British Columbia and Nova Scotia. Population rates of catheterization and high-risk coronary disease detection for each health region in these three provinces, and age-adjusted rates produced using direct standardization. A mixed effects regression analysis was performed to assess the relationship between catheterization rate and high-risk coronary disease detection.</p> <p>Results</p> <p>In the contemporary Alberta data, we found a linear relationship between the population catheterization rate and the high-risk yield. Although the yield was slightly less in time period 2 (2002-2006) than in time period 1(1995-2001), there was no statistical evidence of a plateau. The linear relationship between catheterization rate and high-risk yield was similarly demonstrated in British Columbia and Nova Scotia and appears to extend, without a plateau in yield, to rates over 800 procedures per 100,000 population.</p> <p>Conclusions</p> <p>Our study demonstrates a consistent finding, over time and across jurisdictions, of linearly increasing detection of high-risk CAD as population rates of cardiac catheterization increase. This internationally-relevant finding can inform country-level planning of invasive cardiac care services.</p

    Single cell RNA-seq reveals profound transcriptional similarity between Barrett's oesophagus and oesophageal submucosal glands

    Get PDF
    Barrett’s oesophagus is a precursor of oesophageal adenocarcinoma. In this common condition, squamous epithelium in the oesophagus is replaced by columnar epithelium in response to acid reflux. Barrett’s oesophagus is highly heterogeneous and its relationships to normal tissues are unclear. Here we investigate the cellular complexity of Barrett’s oesophagus and the upper gastrointestinal tract using RNA-sequencing of single cells from multiple biopsies from six patients with Barrett’s oesophagus and two patients without oesophageal pathology. We find that cell populations in Barrett’s oesophagus, marked by LEFTY1 and OLFM4, exhibit a profound transcriptional overlap with oesophageal submucosal gland cells, but not with gastric or duodenal cells. Additionally, SPINK4 and ITLN1 mark cells that precede morphologically identifiable goblet cells in colon and Barrett’s oesophagus, potentially aiding the identification of metaplasia. Our findings reveal striking transcriptional relationships between normal tissue populations and cells in a premalignant condition, with implications for clinical practice

    Srv Mediated Dispersal of Streptococcal Biofilms Through SpeB Is Observed in CovRS+ Strains

    Get PDF
    Group A Streptococcus (GAS) is a human specific pathogen capable of causing both mild infections and severe invasive disease. We and others have shown that GAS is able to form biofilms during infection. That is to say, they form a three-dimensional, surface attached structure consisting of bacteria and a multi-component extracellular matrix. The mechanisms involved in regulation and dispersal of these GAS structures are still unclear. Recently we have reported that in the absence of the transcriptional regulator Srv in the MGAS5005 background, the cysteine protease SpeB is constitutively produced, leading to increased tissue damage and decreased biofilm formation during a subcutaneous infection in a mouse model. This was interesting because MGAS5005 has a naturally occurring mutation that inactivates the sensor kinase domain of the two component regulatory system CovRS. Others have previously shown that strains lacking covS are associated with decreased SpeB production due to CovR repression of speB expression. Thus, our results suggest the inactivation of srv can bypass CovR repression and lead to constitutive SpeB production. We hypothesized that Srv control of SpeB production may be a mechanism to regulate biofilm dispersal and provide a mechanism by which mild infection can transition to severe disease through biofilm dispersal. The question remained however, is this mechanism conserved among GAS strains or restricted to the unique genetic makeup of MGAS5005. Here we show that Srv mediated control of SpeB and biofilm dispersal is conserved in the invasive clinical isolates RGAS053 (serotype M1) and MGAS315 (serotype M3), both of which have covS intact. This work provides additional evidence that Srv regulated control of SpeB may mediate biofilm formation and dispersal in diverse strain backgrounds

    Elucidating the Role of the Complement Control Protein in Monkeypox Pathogenicity

    Get PDF
    Monkeypox virus (MPXV) causes a smallpox-like disease in humans. Clinical and epidemiological studies provide evidence of pathogenicity differences between two geographically distinct monkeypox virus clades: the West African and Congo Basin. Genomic analysis of strains from both clades identified a ∼10 kbp deletion in the less virulent West African isolates sequenced to date. One absent open reading frame encodes the monkeypox virus homologue of the complement control protein (CCP). This modulatory protein prevents the initiation of both the classical and alternative pathways of complement activation. In monkeypox virus, CCP, also known as MOPICE, is a ∼24 kDa secretory protein with sequence homology to this superfamily of proteins. Here we investigate CCP expression and its role in monkeypox virulence and pathogenesis. CCP was incorporated into the West African strain and removed from the Congo Basin strain by homologous recombination. CCP expression phenotypes were confirmed for both wild type and recombinant monkeypox viruses and CCP activity was confirmed using a C4b binding assay. To characterize the disease, prairie dogs were intranasally infected and disease progression was monitored for 30 days. Removal of CCP from the Congo Basin strain reduced monkeypox disease morbidity and mortality, but did not significantly decrease viral load. The inclusion of CCP in the West African strain produced changes in disease manifestation, but had no apparent effect on disease-associated mortality. This study identifies CCP as an important immuno-modulatory protein in monkeypox pathogenesis but not solely responsible for the increased virulence seen within the Congo Basin clade of monkeypox virus

    Ligand-Dependent Conformations and Dynamics of the Serotonin 5-HT2A Receptor Determine Its Activation and Membrane-Driven Oligomerization Properties

    Get PDF
    From computational simulations of a serotonin 2A receptor (5-HT2AR) model complexed with pharmacologically and structurally diverse ligands we identify different conformational states and dynamics adopted by the receptor bound to the full agonist 5-HT, the partial agonist LSD, and the inverse agonist Ketanserin. The results from the unbiased all-atom molecular dynamics (MD) simulations show that the three ligands affect differently the known GPCR activation elements including the toggle switch at W6.48, the changes in the ionic lock between E6.30 and R3.50 of the DRY motif in TM3, and the dynamics of the NPxxY motif in TM7. The computational results uncover a sequence of steps connecting these experimentally-identified elements of GPCR activation. The differences among the properties of the receptor molecule interacting with the ligands correlate with their distinct pharmacological properties. Combining these results with quantitative analysis of membrane deformation obtained with our new method (Mondal et al, Biophysical Journal 2011), we show that distinct conformational rearrangements produced by the three ligands also elicit different responses in the surrounding membrane. The differential reorganization of the receptor environment is reflected in (i)-the involvement of cholesterol in the activation of the 5-HT2AR, and (ii)-different extents and patterns of membrane deformations. These findings are discussed in the context of their likely functional consequences and a predicted mechanism of ligand-specific GPCR oligomerization

    Single domain antibodies: promising experimental and therapeutic tools in infection and immunity

    Get PDF
    Antibodies are important tools for experimental research and medical applications. Most antibodies are composed of two heavy and two light chains. Both chains contribute to the antigen-binding site which is usually flat or concave. In addition to these conventional antibodies, llamas, other camelids, and sharks also produce antibodies composed only of heavy chains. The antigen-binding site of these unusual heavy chain antibodies (hcAbs) is formed only by a single domain, designated VHH in camelid hcAbs and VNAR in shark hcAbs. VHH and VNAR are easily produced as recombinant proteins, designated single domain antibodies (sdAbs) or nanobodies. The CDR3 region of these sdAbs possesses the extraordinary capacity to form long fingerlike extensions that can extend into cavities on antigens, e.g., the active site crevice of enzymes. Other advantageous features of nanobodies include their small size, high solubility, thermal stability, refolding capacity, and good tissue penetration in vivo. Here we review the results of several recent proof-of-principle studies that open the exciting perspective of using sdAbs for modulating immune functions and for targeting toxins and microbes

    Trace elements in hemodialysis patients: a systematic review and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hemodialysis patients are at risk for deficiency of essential trace elements and excess of toxic trace elements, both of which can affect health. We conducted a systematic review to summarize existing literature on trace element status in hemodialysis patients.</p> <p>Methods</p> <p>All studies which reported relevant data for chronic hemodialysis patients and a healthy control population were eligible, regardless of language or publication status. We included studies which measured at least one of the following elements in whole blood, serum, or plasma: antimony, arsenic, boron, cadmium, chromium, cobalt, copper, fluorine, iodine, lead, manganese, mercury, molybdenum, nickel, selenium, tellurium, thallium, vanadium, and zinc. We calculated differences between hemodialysis patients and controls using the differences in mean trace element level, divided by the pooled standard deviation.</p> <p>Results</p> <p>We identified 128 eligible studies. Available data suggested that levels of cadmium, chromium, copper, lead, and vanadium were higher and that levels of selenium, zinc and manganese were lower in hemodialysis patients, compared with controls. Pooled standard mean differences exceeded 0.8 standard deviation units (a large difference) higher than controls for cadmium, chromium, vanadium, and lower than controls for selenium, zinc, and manganese. No studies reported data on antimony, iodine, tellurium, and thallium concentrations.</p> <p>Conclusion</p> <p>Average blood levels of biologically important trace elements were substantially different in hemodialysis patients, compared with healthy controls. Since both deficiency and excess of trace elements are potentially harmful yet amenable to therapy, the hypothesis that trace element status influences the risk of adverse clinical outcomes is worthy of investigation.</p
    • …
    corecore