869 research outputs found
Desensitizing Inflation from the Planck Scale
A new mechanism to control Planck-scale corrections to the inflationary eta
parameter is proposed. A common approach to the eta problem is to impose a
shift symmetry on the inflaton field. However, this symmetry has to remain
unbroken by Planck-scale effects, which is a rather strong requirement on
possible ultraviolet completions of the theory. In this paper, we show that the
breaking of the shift symmetry by Planck-scale corrections can be
systematically suppressed if the inflaton field interacts with a conformal
sector. The inflaton then receives an anomalous dimension in the conformal
field theory, which leads to sequestering of all dangerous high-energy
corrections. We analyze a number of models where the mechanism can be seen in
action. In our most detailed example we compute the exact anomalous dimensions
via a-maximization and show that the eta problem can be solved using only
weakly-coupled physics.Comment: 34 pages, 3 figures
Smeared versus localised sources in flux compactifications
We investigate whether vacuum solutions in flux compactifications that are
obtained with smeared sources (orientifolds or D-branes) still survive when the
sources are localised. This seems to rely on whether the solutions are BPS or
not. First we consider two sets of BPS solutions that both relate to the GKP
solution through T-dualities: (p+1)-dimensional solutions from
spacetime-filling Op-planes with a conformally Ricci-flat internal space, and
p-dimensional solutions with Op-planes that wrap a 1-cycle inside an everywhere
negatively curved twisted torus. The relation between the solution with smeared
orientifolds and the localised version is worked out in detail. We then
demonstrate that a class of non-BPS AdS_4 solutions that exist for IASD fluxes
and with smeared D3-branes (or analogously for ISD fluxes with anti-D3-branes)
does not survive the localisation of the (anti) D3-branes. This casts doubts on
the stringy consistency of non-BPS solutions that are obtained in the limit of
smeared sources.Comment: 23 pages; v2: minor corrections, added references, version published
in JHE
Gravity waves and the LHC: Towards high-scale inflation with low-energy SUSY
It has been argued that rather generic features of string-inspired
inflationary theories with low-energy supersymmetry (SUSY) make it difficult to
achieve inflation with a Hubble scale H > m_{3/2}, where m_{3/2} is the
gravitino mass in the SUSY-breaking vacuum state. We present a class of
string-inspired supergravity realizations of chaotic inflation where a simple,
dynamical mechanism yields hierarchically small scales of post-inflationary
supersymmetry breaking. Within these toy models we can easily achieve small
ratios between m_{3/2} and the Hubble scale of inflation. This is possible
because the expectation value of the superpotential relaxes from large to
small values during the course of inflation. However, our toy models do not
provide a reasonable fit to cosmological data if one sets the SUSY-breaking
scale to m_{3/2} < TeV. Our work is a small step towards relieving the apparent
tension between high-scale inflation and low-scale supersymmetry breaking in
string compactifications.Comment: 21+1 pages, 5 figures, LaTeX, v2: added references, v3: very minor
changes, version to appear in JHE
The problematic backreaction of SUSY-breaking branes
In this paper we investigate the localisation of SUSY-breaking branes which,
in the smeared approximation, support specific non-BPS vacua. We show, for a
wide class of boundary conditions, that there is no flux vacuum when the branes
are described by a genuine delta-function. Even more, we find that the smeared
solution is the unique solution with a regular brane profile. Our setup
consists of a non-BPS AdS_7 solution in massive IIA supergravity with smeared
anti-D6-branes and fluxes T-dual to ISD fluxes in IIB supergravity.Comment: 27 pages, Latex2e, 5 figure
Experimental infection of dogs with a feline endogenous retrovirus RD-114
<p>Abstract</p> <p>Background</p> <p>The feline endogenous retrovirus RD114 is contained in the genome of cats. The virus may contaminate live canine vaccines based on cultured feline cells. The <it>in vivo </it>infectivity, acute and subacute pathogenicity, and viral proliferation of the RD114 virus were evaluated by experimental infection of dogs.</p> <p>Methods</p> <p>Nine specific pathogen free dogs were divided into three groups, with each group consisting of one female and two male dogs. Dogs were subcutaneously inoculated in the neck with either 1 ml RD114 stock virus (group A), inactivated RD114 virus suspension (group B), or cell culture medium (group C) as a negative control. To assess blood cell counts and biochemical properties, blood samples from each group were collected 5 days before inoculation, just prior to inoculation, and 1, 3, 7 and 10 days post-inoculation.</p> <p>Result</p> <p>During the experimental period of 51 days, none of the dogs inoculated with RD114 virus showed any clinical signs, significant increases in rectal temperature or abnormal blood biochemical characteristics including C-reactive protein when compared with the negative controls. We were not able to re-isolate the RD114 virus from buffy coat cells of group A dogs. Additionally, we could not detect RD114 provirus in the genomic DNA isolated from peripheral blood leukocytes, lymph node, spleen and sternal bone marrow cells.</p> <p>Conclusions</p> <p>Signs of RD114 virus proliferation were not found after subcutaneous infection of dogs. Although the potential risk caused by infection with RD114 virus in dogs could not be assessed in this study, we suspect that RD114 virus has little or no virulence in dogs.</p
Superpotential de-sequestering in string models
Non-perturbative superpotential cross-couplings between visible sector matter
and K\"ahler moduli can lead to significant flavour-changing neutral currents
in compactifications of type IIB string theory. Here, we compute corrections to
Yukawa couplings in orbifold models with chiral matter localised on D3-branes
and non-perturbative effects on distant D7-branes. By evaluating a threshold
correction to the D7-brane gauge coupling, we determine conditions under which
the non-perturbative corrections to the Yukawa couplings appear. The flavour
structure of the induced Yukawa coupling generically fails to be aligned with
the tree-flavour structure. We check our results by also evaluating a
correlation function of two D7-brane gauginos and a D3-brane Yukawa coupling.
Finally, by calculating a string amplitude between n hidden scalars and visible
matter we show how non-vanishing vacuum expectation values of distant D7-brane
scalars, if present, may correct visible Yukawa couplings with a flavour
structure that differs from the tree-level flavour structure.Comment: 37 pages + appendices, 8 figure
Fluxes and Warping for Gauge Couplings in F-theory
We compute flux-dependent corrections in the four-dimensional F-theory
effective action using the M-theory dual description. In M-theory the 7-brane
fluxes are encoded by four-form flux and modify the background geometry and
Kaluza-Klein reduction ansatz. In particular, the flux sources a warp factor
which also depends on the torus directions of the compactification fourfold.
This dependence is crucial in the derivation of the four-dimensional action,
although the torus fiber is auxiliary in F-theory. In M-theory the 7-branes are
described by an infinite array of Taub-NUT spaces. We use the explicit metric
on this geometry to derive the locally corrected warp factor and M-theory
three-from as closed expressions. We focus on contributions to the 7-brane
gauge coupling function from this M-theory back-reaction and show that terms
quadratic in the internal seven-brane flux are induced. The real part of the
gauge coupling function is modified by the M-theory warp factor while the
imaginary part is corrected due to a modified M-theory three-form potential.
The obtained contributions match the known weak string coupling result, but
also yield additional terms suppressed at weak coupling. This shows that the
completion of the M-theory reduction opens the way to compute various
corrections in a genuine F-theory setting away from the weak string coupling
limit.Comment: 46 page
The Conformal Sector of F-theory GUTs
D3-brane probes of exceptional Yukawa points in F-theory GUTs are natural
hidden sectors for particle phenomenology. We find that coupling the probe to
the MSSM yields a new class of N = 1 conformal fixed points with computable
infrared R-charges. Quite surprisingly, we find that the MSSM only weakly mixes
with the strongly coupled sector in the sense that the MSSM fields pick up
small exactly computable anomalous dimensions. Additionally, we find that
although the states of the probe sector transform as complete GUT multiplets,
their coupling to Standard Model fields leads to a calculable threshold
correction to the running of the visible sector gauge couplings which improves
precision unification. We also briefly consider scenarios in which SUSY is
broken in the hidden sector. This leads to a gauge mediated spectrum for the
gauginos and first two superpartner generations, with additional contributions
to the third generation superpartners and Higgs sector.Comment: v2: 51 pages, 2 figures, remark added, typos correcte
ZyFISH: A Simple, Rapid and Reliable Zygosity Assay for Transgenic Mice
Microinjection of DNA constructs into fertilized mouse oocytes typically results in random transgene integration at a single genomic locus. The resulting transgenic founders can be used to establish hemizygous transgenic mouse lines. However, practical and experimental reasons often require that such lines be bred to homozygosity. Transgene zygosity can be determined by progeny testing assays which are expensive and time-consuming, by quantitative Southern blotting which is labor-intensive, or by quantitative PCR (qPCR) which requires transgene-specific design. Here, we describe a zygosity assessment procedure based on fluorescent in situ hybridization (zyFISH). The zyFISH protocol entails the detection of transgenic loci by FISH and the concomitant assignment of homozygosity using a concise and unbiased scoring system. The method requires small volumes of blood, is scalable to at least 40 determinations per assay, and produces results entirely consistent with the progeny testing assay. This combination of reliability, simplicity and cost-effectiveness makes zyFISH a method of choice for transgenic mouse zygosity determinations
- âŠ