65 research outputs found

    Drug-resistant genotypes and multi-clonality in Plasmodium falciparum analysed by direct genome sequencing from peripheral blood of malaria patients.

    Get PDF
    Naturally acquired blood-stage infections of the malaria parasite Plasmodium falciparum typically harbour multiple haploid clones. The apparent number of clones observed in any single infection depends on the diversity of the polymorphic markers used for the analysis, and the relative abundance of rare clones, which frequently fail to be detected among PCR products derived from numerically dominant clones. However, minority clones are of clinical interest as they may harbour genes conferring drug resistance, leading to enhanced survival after treatment and the possibility of subsequent therapeutic failure. We deployed new generation sequencing to derive genome data for five non-propagated parasite isolates taken directly from 4 different patients treated for clinical malaria in a UK hospital. Analysis of depth of coverage and length of sequence intervals between paired reads identified both previously described and novel gene deletions and amplifications. Full-length sequence data was extracted for 6 loci considered to be under selection by antimalarial drugs, and both known and previously unknown amino acid substitutions were identified. Full mitochondrial genomes were extracted from the sequencing data for each isolate, and these are compared against a panel of polymorphic sites derived from published or unpublished but publicly available data. Finally, genome-wide analysis of clone multiplicity was performed, and the number of infecting parasite clones estimated for each isolate. Each patient harboured at least 3 clones of P. falciparum by this analysis, consistent with results obtained with conventional PCR analysis of polymorphic merozoite antigen loci. We conclude that genome sequencing of peripheral blood P. falciparum taken directly from malaria patients provides high quality data useful for drug resistance studies, genomic structural analyses and population genetics, and also robustly represents clonal multiplicity

    A systematic review and meta-analysis of evidence for correlation between molecular markers of parasite resistance and treatment outcome in falciparum malaria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An assessment of the correlation between anti-malarial treatment outcome and molecular markers would improve the early detection and monitoring of drug resistance by <it>Plasmodium falciparum</it>. The purpose of this systematic review was to determine the risk of treatment failure associated with specific polymorphisms in the parasite genome or gene copy number.</p> <p>Methods</p> <p>Clinical studies of non-severe malaria reporting on target genetic markers (SNPs for <it>pfmdr1</it>, <it>pfcrt</it>, <it>dhfr</it>, <it>dhps</it>, gene copy number for <it>pfmdr1</it>) providing complete information on inclusion criteria, outcome, follow up and genotyping, were included. Three investigators independently extracted data from articles. Results were stratified by gene, codon, drug and duration of follow-up. For each study and aggregate data the random effect odds ratio (OR) with 95%CIs was estimated and presented as Forest plots. An OR with a lower 95<sup>th </sup>confidence interval > 1 was considered consistent with a failure being associated to a given gene mutation.</p> <p>Results</p> <p>92 studies were eligible among the selection from computerized search, with information on <it>pfcrt </it>(25/159 studies), <it>pfmdr1 </it>(29/236 studies), <it>dhfr </it>(18/373 studies), <it>dhps </it>(20/195 studies). The risk of therapeutic failure after chloroquine was increased by the presence of <it>pfcrt </it>K76T (Day 28, OR = 7.2 [95%CI: 4.5–11.5]), <it>pfmdr1 </it>N86Y was associated with both chloroquine (Day 28, OR = 1.8 [95%CI: 1.3–2.4]) and amodiaquine failures (OR = 5.4 [95%CI: 2.6–11.3, p < 0.001]). For sulphadoxine-pyrimethamine the <it>dhfr </it>single (S108N) (Day 28, OR = 3.5 [95%CI: 1.9–6.3]) and triple mutants (S108N, N51I, C59R) (Day 28, OR = 3.1 [95%CI: 2.0–4.9]) and <it>dhfr</it>-<it>dhps </it>quintuple mutants (Day 28, OR = 5.2 [95%CI: 3.2–8.8]) also increased the risk of treatment failure. Increased <it>pfmdr1 </it>copy number was correlated with treatment failure following mefloquine (OR = 8.6 [95%CI: 3.3–22.9]).</p> <p>Conclusion</p> <p>When applying the selection procedure for comparative analysis, few studies fulfilled all inclusion criteria compared to the large number of papers identified, but heterogeneity was limited. Genetic molecular markers were related to an increased risk of therapeutic failure. Guidelines are discussed and a checklist for further studies is proposed.</p

    Efficacy and safety of a fixed dose artesunate-sulphamethoxypyrazine-pyrimethamine compared to artemether-lumefantrine for the treatment of uncomplicated falciparum malaria across Africa: a randomized multi-centre trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The efficacy of artemisinin-based combination therapy has already been demonstrated in a number of studies all over the world, and some of them can be regarded as comparably effective. Ease of administration of anti-malarial treatments with shorter courses and fewer tablets may be key determinant of compliance.</p> <p>Methods</p> <p>Patients with uncomplicated falciparum malaria and over six months of age were recruited in Cameroon, Mali, Rwanda and Sudan. 1,384 patients were randomly assigned to receive artesunate-sulphamethoxypyrazine-pyrimethamine (AS-SMP) three-day (once daily for 3 days) regimen (N = 476) or AS-SMP 24-hour (0 h, 12 h, 24 h) regimen (N = 458) or artemether-lumefantrine (AL), the regular 6 doses regimen (N = 450). The primary objective was to demonstrate non-inferiority (using a margin of -6%) of AS-SMP 24 hours or AS-SMP three days versus AL on the PCR-corrected 28-day cure rate.</p> <p>Results</p> <p>The PCR corrected 28-day cure rate on the intention to treat (ITT) analysis population were: 96.0%(457/476) in the AS-SMP three-day group, 93.7%(429/458) in the AS-SMP 24-hour group and 92.0%(414/450) in the AL group. Likewise, the cure rates on the PP analysis population were high: 99.3%(432/437) in the AS-SMP three-day group, 99.5%(416/419) in the AS-SMP 24-hour group and 99.7(391/394)% in the AL group. Most common drug-related adverse events were gastrointestinal symptoms (such as vomiting and diarrhea) which were slightly higher in the AS-SMP 24-hour group.</p> <p>Conclusion</p> <p>AS-SMP three days or AS-SMP 24 hours are safe, are as efficacious as AL, and are well tolerated.</p> <p>Trial registration</p> <p>NCT00484900 <url>http://www.clinicaltrials.gov</url>.</p

    Classification of bipolar disorder in psychiatric hospital. a prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study has explored the classification of bipolar disorder in psychiatric hospital. A review of the literature reveals that there is a need for studies using stringent methodological approaches.</p> <p>Methods</p> <p>480 first-time admitted patients to psychiatric hospital were found eligible and 271 of these gave written informed consent. The study sample was comprised of 250 patients (52%) with hospital diagnoses. For the study, expert diagnoses were given on the basis of a structured diagnostic interview (M.I.N.I.PLUS) and retrospective review of patient records.</p> <p>Results</p> <p>Agreement between the expert's and the clinicians' diagnoses was estimated using Cohen's kappa statistics. 76% of the primary diagnoses given by the expert were in the affective spectrum. Agreement concerning these disorders was moderate (kappa ranging from 0.41 to 0.47). Of 58 patients with bipolar disorder, only 17 received this diagnosis in the clinic. Almost all patients with a current manic episode were classified as currently manic by the clinicians. Forty percent diagnosed as bipolar by the expert, received a diagnosis of unipolar depression by the clinician. Fifteen patients (26%) were not given a diagnosis of affective disorder at all.</p> <p>Conclusions</p> <p>Our results indicate a considerable misclassification of bipolar disorder in psychiatric hospital, mainly in patients currently depressed. The importance of correctly diagnosing bipolar disorder should be emphasized both for clinical, administrative and research purposes. The findings questions the validity of psychiatric case registers. There are potential benefits in structuring the diagnostic process better in the clinic.</p

    Vivax malaria in Mauritania includes infection of a Duffy-negative individual

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Duffy blood group polymorphisms are important in areas where <it>Plasmodium vivax </it>is present because this surface antigen is thought to act as a key receptor for this parasite. In the present study, Duffy blood group genotyping was performed in febrile uninfected and <it>P. vivax</it>-infected patients living in the city of Nouakchott, Mauritania.</p> <p>Methods</p> <p><it>Plasmodium vivax </it>was identified by real-time PCR. The Duffy blood group genotypes were determined by standard PCR followed by sequencing of the promoter region and exon 2 of the Duffy gene in 277 febrile individuals. Fisher's exact test was performed in order to assess the significance of variables.</p> <p>Results</p> <p>In the Moorish population, a high frequency of the <it>FYB<sup>ES</sup>/FYB<sup>ES </sup></it>genotype was observed in uninfected individuals (27.8%), whereas no <it>P. vivax</it>-infected patient had this genotype. This was followed by a high level of <it>FYA/FYB</it>, <it>FYB/FYB</it>, <it>FYB/FYB<sup>ES </sup></it>and <it>FYA/FYB<sup>ES </sup></it>genotype frequencies, both in the <it>P. vivax</it>-infected and uninfected patients. In other ethnic groups (Poular, Soninke, Wolof), only the <it>FYB<sup>ES</sup>/FYB<sup>ES </sup></it>genotype was found in uninfected patients, whereas the <it>FYA/FYB<sup>ES </sup></it>genotype was observed in two <it>P. vivax</it>-infected patients. In addition, one patient belonging to the Wolof ethnic group presented the <it>FYB<sup>ES</sup>/FYB<sup>ES </sup></it>genotype and was infected by <it>P. vivax</it>.</p> <p>Conclusions</p> <p>This study presents the Duffy blood group polymorphisms in Nouakchott City and demonstrates that in Mauritania, <it>P. vivax </it>is able to infect Duffy-negative patients. Further studies are necessary to identify the process that enables this Duffy-independent <it>P. vivax </it>invasion of human red blood cells.</p
    • 

    corecore