14 research outputs found

    An \u3cem\u3eFTO\u3c/em\u3e Gene Variant Moderates the Association between Parental Restriction and Child BMI

    Get PDF
    Objective: This study aimed to explore whether a common variant in the FTO gene moderates the relationship between parental restriction and child BMI. Methods: This study reports on baseline data from 178 parent-child (ages 9–10 years) dyads. Parents completed the Child Feeding Questionnaire and reported on socio-demographic characteristics. Each child’s height, weight and FTO rs9939609 genotype was assessed. Ordinary least squares regression was used to fit the child’s BMI-percentile on parental restriction and the child’s FTO genotype, adjusted for covariates. A likelihood ratio test was used to compare a model with and without a multiplicative interaction term between restriction and genotype. Results: Most participants (93.3%) were white, non-Hispanic. Twenty-three percent of children were overweight/obese and FTO genotype was associated with weight status. Mean parental restriction was statistically higher among overweight/obese vs. normal weight children: 3.3 (SD 0.8) vs. 2.8 (SD 1.0); t-test p-value = 0.002. Parental restriction was positively associated with child BMI-percentile and BMI-z only among children with two copies of the high-risk FTO allele (p for interaction = 0.02), where each one-point increase in parental restriction was associated with a 14.7 increase in the child’s BMI-percentile or a 0.56-point increase in the child’s BMI z-score. Conclusion: For only the children with two high-risk alleles, parental restriction was positively associated with child BMI-percentile

    Paracetamol in therapeutic dosages and acute liver injury: causality assessment in a prospective case series

    Get PDF
    Background: Acute liver injury (ALI) induced by paracetamol overdose is a well known cause of emergency hospital admission and death. However, there is debate regarding the risk of ALI after therapeutic dosages of the drug. The aim is to describe the characteristics of patients admitted to hospital with jaundice who had previous exposure to therapeutic doses of paracetamol. An assessment of the causality role of paracetamol was performed in each case. Methods: Based on the evaluation of prospectively gathered cases of ALI with detailed clinical information, thirty-two cases of ALI in non-alcoholic patients exposed to therapeutic doses of paracetamol were identified. Two authors assessed all drug exposures by using the CIOMS/RUCAM scale. Each case was classified into one of five categories based on the causality score for paracetamol. Results: In four cases the role of paracetamol was judged to be unrelated, in two unlikely, and these were excluded from evaluation. In seven of the remaining 26 cases, the RUCAM score associated with paracetamol was higher than that associated with other concomitant medications. The estimated incidence of ALI related to the use of paracetamol in therapeutic dosages was 0.4 per million inhabitants older than 15 years of age and per year (99%CI, 0.2-0.8) and of 10 per million paracetamol users-year (95% CI 4.3-19.4). Conclusions:Our results indicate that paracetamol in therapeutic dosages may be considered in the causality assessment in non-alcoholic patients with liver injury, even if the estimated incidence of ALI related to paracetamol appears to be low

    Exploring Liver Mitochondrial Function by 13C-Stable Isotope Breath Tests: Implications in Clinical Biochemistry

    No full text
    : The liver plays a pivotal role in a myriad of metabolic processes, including detoxification, glycolipidic storage and export, and protein synthesis. Breath tests employing (13)C as stable isotope have been introduced to explore such energy-dependent pathways involving mitochondrial function in the liver. Specific substrates are ketoisocaproic acid, methionine, and octanoic acid. In humans, the application of (13)C-breath tests ranges from nonalcoholic and alcoholic liver diseases to liver cirrhosis, hepatocarcinoma, preoperative and postoperative assessment of liver function, and drug-induced liver damage. Studying liver mitochondrial function by (13)C-breath tests represents a complementary tool to monitor complex metabolic processes in health and disease
    corecore