76 research outputs found

    Being a quantitative interviewer: qualitatively exploring interviewers' experiences in a longitudinal cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many studies of health outcomes rely on data collected by interviewers administering highly-structured (quantitative) questionnaires to participants. Little appears to be known about the experiences of such interviewers. This paper explores interviewer experiences of working on a longitudinal study in New Zealand (the Prospective Outcomes of injury Study - POIS). Interviewers administer highly-structured questionnaires to participants, usually by telephone, and enter data into a secure computer program. The research team had expectations of interviewers including: consistent questionnaire administration, timeliness, proportions of potential participants recruited and an empathetic communication style. This paper presents results of a focus group to qualitatively explore with the team of interviewers their experiences, problems encountered, strategies, support systems used and training.</p> <p>Methods</p> <p>A focus group with interviewers involved in the POIS interviews was held; it was audio-recorded and transcribed. The analytical method was thematic, with output intended to be descriptive and interpretive.</p> <p>Results</p> <p>Nine interviewers participated in the focus group (average time in interviewer role was 31 months). Key themes were: 1) the positive aspects of the quantitative interviewer role (i.e. relationships and resilience, insights gained, and participants' feedback), 2) difficulties interviewers encountered and solutions identified (i.e. stories lost or incomplete, forgotten appointments, telling the stories, acknowledging distress, stories reflected and debriefing and support), and 3) meeting POIS researcher expectations (i.e. performance standards, time-keeping, dealing exclusively with the participant and maintaining privacy).</p> <p>Conclusions</p> <p>Interviewers demonstrated great skill in the way they negotiated research team expectations whilst managing the relationships with participants. Interviewers found it helpful to have a research protocol in place in the event of sensitive situations - this appeared to alleviate the pressure on interviewers to carry the burden of responsibility. Interviewers are employed to scientifically gather quantitative data, yet their effectiveness relies largely on their humanity. We propose that the personal connection generated between the interviewers and participants was important, and enabled successful follow-up rates for the study. The enjoyment of these relationships was crucial to interviewers and helped balance the negative aspects of their role. Our results suggest that experienced quantitative interviewers endeavour, as do many qualitative researchers, to carefully and respectfully negotiate the requirements of the interview within a relationship they form with participants: being sensitive to the needs of participants and respectful of their wishes - and establishing an ethical relationship.</p

    Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC

    Get PDF
    DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6  ×  6  ×  6 m 3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties

    Supernova neutrino burst detection with the Deep Underground Neutrino Experiment

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE's ability to constrain the νe spectral parameters of the neutrino burst will be considered

    The DUNE Far Detector Interim Design Report, Volume 3: Dual-Phase Module

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE far detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 3 describes the dual-phase module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure

    The DUNE Far Detector Interim Design Report, Volume 2: Single-Phase Module

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE far detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 2 describes the single-phase module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure

    The DUNE Far Detector Interim Design Report Volume 1: Physics, Technology and Strategies

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE Far Detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 1 contains an executive summary that describes the general aims of this document. The remainder of this first volume provides a more detailed description of the DUNE physics program that drives the choice of detector technologies. It also includes concise outlines of two overarching systems that have not yet evolved to consortium structures: computing and calibration. Volumes 2 and 3 of this IDR describe, for the single-phase and dual-phase technologies, respectively, each detector module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure

    The Single-Phase ProtoDUNE Technical Design Report

    Get PDF
    ProtoDUNE-SP is the single-phase DUNE Far Detector prototype that is under construction and will be operated at the CERN Neutrino Platform (NP) starting in 2018. ProtoDUNE-SP, a crucial part of the DUNE effort towards the construction of the first DUNE 10-kt fiducial mass far detector module (17 kt total LAr mass), is a significant experiment in its own right. With a total liquid argon (LAr) mass of 0.77 kt, it represents the largest monolithic single-phase LArTPC detector to be built to date. It's technical design is given in this report
    corecore