19 research outputs found

    Cashew nut allergy: clinical relevance and allergen characterisation

    Get PDF
    Cashew plant (Anacardium occidentale L.) is the most relevant species of the Anacardium genus. It presents high economic value since it is widely used in human nutrition and in several industrial applications. Cashew nut is a well-appreciated food (belongs to the tree nut group), being widely consumed as snacks and in processed foods by the majority of world's population. However, cashew nut is also classified as a potent allergenic food known to be responsible for triggering severe and systemic immune reactions (e.g. anaphylaxis) in sensitised/allergic individuals that often demand epinephrine treatment and hospitalisation. So far, three groups of allergenic proteins have been identified and characterised in cashew nut: Ana o 1 and Ana o 2 (cupin superfamily) and Ana o 3 (prolamin superfamily), which are all classified as major allergens. The prevalence of cashew nut allergy seems to be rising in industrialised countries with the increasing consumption of this nut. There is still no cure for cashew nut allergy, as well as for other food allergies; thus, the allergic patients are advised to eliminate it from their diets. Accordingly, when carefully choosing processed foods that are commercially available, the allergic consumers have to rely on proper food labelling. In this sense, the control of labelling compliance is much needed, which has prompted the development of proficient analytical methods for allergen analysis. In the recent years, significant research advances in cashew nut allergy have been accomplished, which are highlighted and discussed in this review.This work was supported by FCT/MEC through national funds and co-financed by FEDER, under the Partnership Agreement PT2020 with grant no. UID/QUI/50006/2013–POCI/01/ 0145/FEDER/007265. Joana Costa is grateful to FCT post-doctoral grant (SFRH/BPD/102404/2014) financed by POPH-QREN (subsidised by FSE and MCTES).info:eu-repo/semantics/publishedVersio

    Global burden of bacterial antimicrobial resistance 1990-2021: a systematic analysis with forecasts to 2050

    Get PDF
    Background Antimicrobial resistance (AMR) poses an important global health challenge in the 21st century. A previous study has quantified the global and regional burden of AMR for 2019, followed with additional publications that provided more detailed estimates for several WHO regions by country. To date, there have been no studies that produce comprehensive estimates of AMR burden across locations that encompass historical trends and future forecasts. Methods We estimated all-age and age-specific deaths and disability-adjusted life-years (DALYs) attributable to and associated with bacterial AMR for 22 pathogens, 84 pathogen–drug combinations, and 11 infectious syndromes in 204 countries and territories from 1990 to 2021. We collected and used multiple cause of death data, hospital discharge data, microbiology data, literature studies, single drug resistance profiles, pharmaceutical sales, antibiotic use surveys, mortality surveillance, linkage data, outpatient and inpatient insurance claims data, and previously published data, covering 520 million individual records or isolates and 19 513 study-location-years. We used statistical modelling to produce estimates of AMR burden for all locations, including those with no data. Our approach leverages the estimation of five broad component quantities: the number of deaths involving sepsis; the proportion of infectious deaths attributable to a given infectious syndrome; the proportion of infectious syndrome deaths attributable to a given pathogen; the percentage of a given pathogen resistant to an antibiotic of interest; and the excess risk of death or duration of an infection associated with this resistance. Using these components, we estimated disease burden attributable to and associated with AMR, which we define based on two counterfactuals; respectively, an alternative scenario in which all drug-resistant infections are replaced by drug-susceptible infections, and an alternative scenario in which all drug-resistant infections were replaced by no infection. Additionally, we produced global and regional forecasts of AMR burden until 2050 for three scenarios: a reference scenario that is a probabilistic forecast of the most likely future; a Gram-negative drug scenario that assumes future drug development that targets Gram-negative pathogens; and a better care scenario that assumes future improvements in health-care quality and access to appropriate antimicrobials. We present final estimates aggregated to the global, super-regional, and regional level. Findings In 2021, we estimated 4·71 million (95% UI 4·23–5·19) deaths were associated with bacterial AMR, including 1·14 million (1·00–1·28) deaths attributable to bacterial AMR. Trends in AMR mortality over the past 31 years varied substantially by age and location. From 1990 to 2021, deaths from AMR decreased by more than 50% among children younger than 5 years yet increased by over 80% for adults 70 years and older. AMR mortality decreased for children younger than 5 years in all super-regions, whereas AMR mortality in people 5 years and older increased in all super-regions. For both deaths associated with and deaths attributable to AMR, meticillin-resistant Staphylococcus aureus increased the most globally (from 261 000 associated deaths [95% UI 150 000–372 000] and 57 200 attributable deaths [34 100–80 300] in 1990, to 550 000 associated deaths [500 000–600 000] and 130 000 attributable deaths [113 000–146 000] in 2021). Among Gram-negative bacteria, resistance to carbapenems increased more than any other antibiotic class, rising from 619 000 associated deaths (405 000–834 000) in 1990, to 1·03 million associated deaths (909 000–1·16 million) in 2021, and from 127 000 attributable deaths (82 100–171 000) in 1990, to 216 000 (168 000–264 000) attributable deaths in 2021. There was a notable decrease in non-COVID-related infectious disease in 2020 and 2021. Our forecasts show that an estimated 1·91 million (1·56–2·26) deaths attributable to AMR and 8·22 million (6·85–9·65) deaths associated with AMR could occur globally in 2050. Super-regions with the highest all-age AMR mortality rate in 2050 are forecasted to be south Asia and Latin America and the Caribbean. Increases in deaths attributable to AMR will be largest among those 70 years and older (65·9% [61·2–69·8] of all-age deaths attributable to AMR in 2050). In stark contrast to the strong increase in number of deaths due to AMR of 69·6% (51·5–89·2) from 2022 to 2050, the number of DALYs showed a much smaller increase of 9·4% (–6·9 to 29·0) to 46·5 million (37·7 to 57·3) in 2050. Under the better care scenario, across all age groups, 92·0 million deaths (82·8–102·0) could be cumulatively averted between 2025 and 2050, through better care of severe infections and improved access to antibiotics, and under the Gram-negative drug scenario, 11·1 million AMR deaths (9·08–13·2) could be averted through the development of a Gram-negative drug pipeline to prevent AMR deaths. Interpretation This study presents the first comprehensive assessment of the global burden of AMR from 1990 to 2021, with results forecasted until 2050. Evaluating changing trends in AMR mortality across time and location is necessary to understand how this important global health threat is developing and prepares us to make informed decisions regarding interventions. Our findings show the importance of infection prevention, as shown by the reduction of AMR deaths in those younger than 5 years. Simultaneously, our results underscore the concerning trend of AMR burden among those older than 70 years, alongside a rapidly ageing global community. The opposing trends in the burden of AMR deaths between younger and older individuals explains the moderate future increase in global number of DALYs versus number of deaths. Given the high variability of AMR burden by location and age, it is important that interventions combine infection prevention, vaccination, minimisation of inappropriate antibiotic use in farming and humans, and research into new antibiotics to mitigate the number of AMR deaths that are forecasted for 2050. Funding UK Department of Health and Social Care's Fleming Fund using UK aid, and the Wellcome Trust

    Modelling the transmission of healthcare associated infections: a systematic review.

    Get PDF
    BACKGROUND: Dynamic transmission models are increasingly being used to improve our understanding of the epidemiology of healthcare-associated infections (HCAI). However, there has been no recent comprehensive review of this emerging field. This paper summarises how mathematical models have informed the field of HCAI and how methods have developed over time. METHODS: MEDLINE, EMBASE, Scopus, CINAHL plus and Global Health databases were systematically searched for dynamic mathematical models of HCAI transmission and/or the dynamics of antimicrobial resistance in healthcare settings. RESULTS: In total, 96 papers met the eligibility criteria. The main research themes considered were evaluation of infection control effectiveness (64%), variability in transmission routes (7%), the impact of movement patterns between healthcare institutes (5%), the development of antimicrobial resistance (3%), and strain competitiveness or co-colonisation with different strains (3%). Methicillin-resistant Staphylococcus aureus was the most commonly modelled HCAI (34%), followed by vancomycin resistant enterococci (16%). Other common HCAIs, e.g. Clostridum difficile, were rarely investigated (3%). Very few models have been published on HCAI from low or middle-income countries.The first HCAI model has looked at antimicrobial resistance in hospital settings using compartmental deterministic approaches. Stochastic models (which include the role of chance in the transmission process) are becoming increasingly common. Model calibration (inference of unknown parameters by fitting models to data) and sensitivity analysis are comparatively uncommon, occurring in 35% and 36% of studies respectively, but their application is increasing. Only 5% of models compared their predictions to external data. CONCLUSIONS: Transmission models have been used to understand complex systems and to predict the impact of control policies. Methods have generally improved, with an increased use of stochastic models, and more advanced methods for formal model fitting and sensitivity analyses. Insights gained from these models could be broadened to a wider range of pathogens and settings. Improvements in the availability of data and statistical methods could enhance the predictive ability of models

    Computer-based tools for decision support in agroforestry: Current state and future needs

    Get PDF
    Successful design of agroforestry practices hinges on the ability to pull together very diverse and sometimes large sets of information (i.e., biophysical, economic and social factors), and then implementing the synthesis of this information across several spatial scales from site to landscape. Agroforestry, by its very nature, creates complex systems with impacts ranging from the site or practice level up to the landscape and beyond. Computer-based Decision Support Tools (DST) help to integrate information to facilitate the decision-making process that directs development, acceptance, adoption, and management aspects in agroforestry. Computer-based DSTs include databases, geographical information systems, models, knowledge-base or expert systems, and ‘hybrid’ decision support systems. These different DSTs and their applications in agroforestry research and development are described in this paper. Although agroforestry lacks the large research foundation of its agriculture and forestry counterparts, the development and use of computer-based tools in agroforestry have been substantial and are projected to increase as the recognition of the productive and protective (service) roles of these tree-based practices expands. The utility of these and future tools for decision-support in agroforestry must take into account the limits of our current scientific information, the diversity of aspects (i.e. economic, social, and biophysical) that must be incorporated into the planning and design process, and, most importantly, who the end-user of the tools will be. Incorporating these tools into the design and planning process will enhance the capability of agroforestry to simultaneously achieve environmental protection and agricultural production goals

    Cardiopulmonary Interactions in the Ventilated Patient

    No full text
    corecore