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Abstract

Background: Dynamic transmission models are increasingly being used to improve our understanding of the
epidemiology of healthcare-associated infections (HCAI). However, there has been no recent comprehensive review
of this emerging field. This paper summarises how mathematical models have informed the field of HCAI and how
methods have developed over time.

Methods: MEDLINE, EMBASE, Scopus, CINAHL plus and Global Health databases were systematically searched for
dynamic mathematical models of HCAI transmission and/or the dynamics of antimicrobial resistance in healthcare
settings.

Results: In total, 96 papers met the eligibility criteria. The main research themes considered were evaluation of
infection control effectiveness (64%), variability in transmission routes (7%), the impact of movement patterns between
healthcare institutes (5%), the development of antimicrobial resistance (3%), and strain competitiveness or co-
colonisation with different strains (3%). Methicillin-resistant Staphylococcus aureus was the most commonly modelled
HCAI (34%), followed by vancomycin resistant enterococci (16%). Other common HCAIs, e.g. Clostridum difficile, were
rarely investigated (3%). Very few models have been published on HCAI from low or middle-income countries.
The first HCAI model has looked at antimicrobial resistance in hospital settings using compartmental deterministic
approaches. Stochastic models (which include the role of chance in the transmission process) are becoming
increasingly common. Model calibration (inference of unknown parameters by fitting models to data) and sensitivity
analysis are comparatively uncommon, occurring in 35% and 36% of studies respectively, but their application is
increasing. Only 5% of models compared their predictions to external data.

Conclusions: Transmission models have been used to understand complex systems and to predict the impact of
control policies. Methods have generally improved, with an increased use of stochastic models, and more advanced
methods for formal model fitting and sensitivity analyses. Insights gained from these models could be broadened to a
wider range of pathogens and settings. Improvements in the availability of data and statistical methods could enhance
the predictive ability of models.

Keywords: Mathematical modelling, Healthcare-associated infections, Epidemiology

Background
Healthcare-associated infections (HCAI) continue to
cause a major burden on society, affecting more than 4
million patients annually in Europe alone, and causing
an estimated 16 million additional bed-days responsible
for €7 billion in direct medical costs [1]. In the United

Kingdom, interventions such as improved hand hygiene,
antibiotic stewardship and screening combined with
decolonisation are believed to have set off a steep reduction
in reported incidence of health care-associated methicillin-
resistant Staphylococcus aureus (MRSA) bacteraemia and
Clostridium difficile infection with peak incidence in
2003/04 and 2007/08 respectively [2]. Further progress in
reducing the burden of HCAI is hindered by uncertainty
surrounding the role of asymptomatic carriers [3,4],
environmental transmission [5-7] and the recent emer-
gence of bacteria other than MRSA and C. difficile, such as
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enterobacteriaceae (e.g. Escherichia coli) [8]. Mathematical
models are increasingly being used to obtain a deeper
understanding of epidemiological patterns in hospital
infections and to guide hospital infection control
policy decisions, as is seen in other areas of infectious
disease epidemiology [9].
A previous review of the area provided insight into the

type of models used for hospital epidemiology and
highlighted their capacity to increase epidemiological
understanding, and inform infection control policy [10].
This review, conducted in 2006, primarily aimed to
explain the capacities of models and therefore was
limited to a detailed description of a number of
studies. Hence, the emerging trends in the area were
not fully explored. Since 2006 the field has expanded
considerably. We conducted a systematic review in
order to establish how mathematical models have
been applied in the field of HCAI, and how model
methods have developed over time.

Methods
We searched Medline (1950 to present), EMBASE (1947
to present), Scopus (1823 to present), CINAHL (1937 to
present) and Global health (1910 to present). Results
were limited to peer-reviewed publications in English.
Search terms and Medical Subject Headings (MeSH) for
nosocomial organisms and antibiotic resistance were
combined with search and MeSH terms for healthcare
settings and mathematical models as follows:

� Nosocomial infections in general (e.g.”healthcare-
associated infection$” or “hospital-acquired infection$”)

OR

� Nosocomial organisms (e.g. “C. difficile” or
“Staphylococcus aureus”) OR Antimicrobial
resistance AND Nosocomial (e.g. “hospital$” or
“healthcare”)

AND

� Mathematical modelling or economic evaluation
model (e.g. “stochastic” or “deterministic” AND
“model”)

We decided not to use search terms for nosocomial
infection types (e.g. surgical site infections or urinary tract
infections), since our review focuses on the transmission
of infections from one individual to another, which cannot
generally be accurately represented without knowing the
causative organism.
The complete search strategy is provided in the

Additional file 1. All databases were search identically,

with exception of the MeSH terms, which were
altered to the subject-heading dictionary used in each
particular database. The final search was conducted
on 11 December 2011. Each title and abstract in the
search result was independently screened by EvK and
at least one of the other authors. Full text evaluation was
conducted by EvK and in case of uncertainty, discussion
took place with JR.

Inclusion criteria
Eligible studies had to fulfil the following criteria: 1)
mathematical modelling of HCAI transmission and/or
the dynamics of antimicrobial resistance; 2) dynamic
transmission models only (i.e. a model which tracks the
number of individuals (or proportion of a population)
carrying or infected with a pathogen over time, while
capturing the effect of contact between individuals on
transmission [9]); 3) a primary focus on HCAI transmission
in healthcare settings.

Exclusion criteria
Studies were excluded if they did not involve: 1) human
to human transmission; or did involve 2) within host trans-
mission only; 3) pharmacodynamics and pharmacokinetics
of drugs (e.g. the impact of antibiotic exposure, exploring
antibiotic tolerance and investigating fitness), 4) animal
transmission of HCAI; 5) community transmission of
pathogens spread in the healthcare environment as
well, where community spread was the focus of the
paper (e.g. SARS epidemics); or 6) literature review
without new primary studies. Moreover, no editorials
or letters to editors were included, except if a new
mathematical model was introduced.

Results
The database search retrieved 2461 unique papers
(Figure 1). After screening the titles and abstracts,
302 papers met the inclusion criteria and were thus
eligible for full text evaluation. Review of the full text
publications resulted in the inclusion of 94 relevant
papers based on our selection criteria. An additional two
papers were identified via reference screening [11,12].
The distribution of these 96 papers over time demon-

strates that HCAI transmission models have been increas-
ingly employed since the introduction of the first model of
nosocomial pathogens’ spread [13] (Figure 2).

Objectives of mathematical models of HCAIs
Pathogens modelled
Although HCAIs are often associated with antibiotic-
resistant bacteria, HCAI models have involved antimicro-
bial susceptible pathogens as well. In this review, studies
that did not specify a particular pathogen of concern, but
that claimed to investigate antimicrobial resistant bacteria,
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were classified as antimicrobial resistant bacteria (ARB).
Otherwise, the study was categorised as ‘HCAI in general’.
Moreover, as the majority of patients can carry HCAI such
as MRSA and C. difficile asymptomatically, many mathem-
atical models simulate the epidemiology of colonisation,
however for brevity we have referred to all models as
concerning the epidemiology of HCAI in the text.
Figure 3 shows that MRSA was the most common

bacterial species studied (34%; 33 studies) [14-46],
followed by Vancomycin-resistant Enterococcus (VRE)
(or glycopeptide-resistant enterococci) (16%; 15 studies)
[12,18,28,31,47-57] whereas C. difficile has rarely been

the subject of a model (3%; 3 studies) [58-60]. As
several studies investigated the dynamics of more
than one pathogen, the total number of infection
agents (N=102) listed in Figure 3 exceeds the total
number of studies (N=96).

Intervention effectiveness
The first model of HCAI conceptualised the spread of
antibiotic resistance in bacterial populations among
hospital patients [13]. This was soon followed by models
evaluating the effectiveness of interventions to reduce
antibiotic resistance (e.g. antibiotic cycling or mixing).

5171 records identified through 
database searching (357 from CINAHL 

plus, 1285 from EMBASE, 556 from 
Global Health, 1061 from Medline, 

1912 from Scopus)

2 additional records 
identified by reference 

searching

2461 records after duplicates removed

2461 records screened
2159 records excluded after 
title-abstract selection based 

on eligibility criteria 

302 full-text articles assessed 
for eligibility

96 of studies included in 
qualitative synthesis 

208 full-text articles 
excluded based on eligibility 

criteria 

Figure 1 PRISMA flowchart.

Figure 2 Number of HCAI modelling publications over time (1993–2011). Number of studies identified on modelling of HCAI and
antimicrobial resistance spread in a nosocomial setting according to year of publication.

van Kleef et al. BMC Infectious Diseases 2013, 13:294 Page 3 of 13
http://www.biomedcentral.com/1471-2334/13/294



Since then, most HCAI models have aimed to quantify
infection control effectiveness (64%; 62 studies). The
infection control measures most frequently considered
among these 62 papers have been: hand hygiene (37%;
23 studies), patient isolation (24%; 15 studies), HCW

cohorting (23%; 14 studies), antibiotic stewardship (21%;
13 studies), and screening (18%, 11 studies). Figure 4
provides an overview of the main interventions mod-
elled over time, emphasising that decolonisation and
vaccination are more recent subjects of study. Moreover,

Figure 3 Pathogens modelled in a nosocomial setting (1993–2011). Number of studies identified on nosocomial infection transmission
according to pathogen type. MRSA= Methicillin resistant Staphylococcus aureus; ARB = Antimicrobial resistant bacteria; VRE = Vancomycin-resistant
Enterococcus; HCAI = Healthcare associated infections; ILI = Influenza-like illness; SARS = Severe acute respiratory syndrome; TB= Tuberculosis;
R-GNR= Third generation cephalosporin-resistant Gram-negative rods; HIV = Human immunodeficiency virus; ESBL = Extended-Spectrum
Beta-Lactamases; CRE = cephalosporin-resistant Enterobacteriaceae.

Figure 4 Main interventions evaluated over time (1993–2011). Main interventions evaluated over time (1993–2011). Illustration of the
proportionate distribution of the seven most commonly investigated interventions by means of a modelling framework by the total number of
publications in each time period.
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a wider variability of interventions has been evaluated
in the later years. Table 1 illustrates the type of inter-
ventions that have been evaluated for each HCAI
pathogen.

Furthering epidemiological understanding
Models are often used to increase epidemiological
understanding. Hospital surveillance data, which is
frequently used to inform HCAI models, can lack detail
in what is needed for modelling purposes. For example,
information on asymptomatic carriage and timing of
events (e.g. infection) are often lacking. Several studies
use new statistical methods to overcome such difficulties
[31,36,48] and to allow for estimation of important
epidemiological parameters (e.g. transmission rates)
from different data sources, varying from routinely
collected hospital data [56,57] to strain typing [63] or
genotype data [64]. Others use modelling techniques to
determine the relative importance of potential transmis-
sion reservoirs or acquisition routes (of C. difficile [58,60],
VRE [50,53], cephalosporin-resistant Enterobacteriaceae
(CRE) [65] and SARS [66].
The ecological dynamics of pathogens have also been

explored using models, including antimicrobial resistance
[13,67,68]; co-colonisation with different pathogen

strain types [27,46] and competition between strains
[24]. Another more recent subject of study is the
potential impact of readmission of patients from settings
such as long-term care facilities (LTCFs) or the community,
as well as general movement patterns between healthcare
institutes and/or the community on the transmission
of MRSA [19,25,38,69], antimicrobial resistance [70]
and HCAI in general [71].
Economic outcomes were not considered in dynamic

transmission models until 2011 [14,23,72]. Three recent
papers applied dynamic modelling techniques to estimate
the economic burden of disease (MRSA) [22] and
norovirus [69], and to investigate economic incentives for
infection control investments [73].

Country of study
A number of studies (36%, 32 studies) did not specify a
particular national setting. Of the publications that did;
only three studies (3%) explored transmission of HCAI
in lower and lower middle income countries [22,74,75]
and another three looked at upper middle income
China [15,66,76]. Studies have mainly concentrated
on the United States (16%; 15 studies), the United
Kingdom (13%; 12 studies) and the Netherlands (10%;
10 studies).

Table 1 Definitions of modelling terms

Term Definition

Deterministic model A model in which there is no role of chance in the evolution of the states of the system, i.e. the model is
‘predetermined’ by the parameters and initial conditions [61].

Stochastic model A model in which random (stochastic) processes can affect whether certain events or processes occur (e.g. the rate
at which individuals are infected can vary by chance) [61].

Compartmental model A model in which the population is divided into subgroups (i.e. compartments), which represent the average values
of individuals in a particular state (e.g. susceptible, infectious or recovered). Within each compartment, all individuals
are homogenous [9].

Individual-based model A model in which single individuals are tracked rather than subgroups. Hence, each individual can be assigned
different characteristics such as the probability of acquiring infection or causing transmission [9].

Model fitting/ model
calibration

The inference of unknown parameters by choosing their values in order to approximate a set of data as well as
possible. Examples of model fitting methods are least squares approximation maximum likelihood estimation and
Markov Chain Monte Carlo Methods [62].

Model validation Comparison of model predictions to external data, that is a model should be validated against observations from
alternative data to the data used for model fitting [62].

Univariate sensitivity
analysis

Investigation of uncertainty in model parameters and its impact on model predictions by means of altering one
parameter at a time whilst holding others at their base-case value.

Bi/ multivariate sensitivity
analysis

Investigation of uncertainty in model parameters by means of alteration of two (or more) parameters at a time whilst
holding others at their base-case value.

Probabilistic sensitivity
analysis

A type of multivariate sensitivity analysis where multiple runs of the model are performed with random selection of
input parameters.

Dynamic transmission
model

A model which tracks the number of individuals (or proportion of a population) carrying or infected with a pathogen
over time, where the risk of transmission to susceptible at a given point in time is dependent on the number of
infected (or colonised) individuals in the community [9].

Static model A model where the transmission risk is treated as a parameter exogenous to the model, i.e. it does not change with
the number of infectious individuals in the population [9].

Force of infection The rate at which infected individuals become infected per unit time [61]
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Methods employed for mathematical modelling of HCAIs
Stochastic vs. deterministic
The first HCAI models captured transmission dynamics
in single wards using deterministic approaches [13,16].
As the population size in a single ward or hospital is
likely to be small, a stochastic modelling approach may
often be more appropriate as it can take account of the
role of chance in determining transmission patterns.
In Table 2, a definition of the modelling terms used
for model classification is provided. Figure 5a shows
that the proportion of stochastic models has increased
steadily over time, and as Figure 6 illustrates, stochasticity
was soon introduced (in 1997) [77] after publication
of the first (deterministic) HCAI model. Several stud-
ies developed both a stochastic and a deterministic
version of a similar compartmental model to investigate
whether projected intervention effects were partly a
result of random fluctuation [18,35,40,78-80]. Others
use a deterministic model to interpret the findings of
a stochastic model [81].

Compartmental vs. individual-based
Infectious disease models can have either an aggregate
(or compartmental) structure (which tracks groups in
the population) or an individual-based structure (which
tracks individuals). The latter enables better incorporation
of heterogeneity in patient characteristics such as patient
demographics, contact patterns and disease history, but at
the cost of increased computational burden. To date, most
(73%; 70 studies) HCAI models have taken an aggregate
approach, although the proportion of individual-based
models has increased over time (Figure 5a). In total, 26
publications (27%) took an individual-based approach of
which seven papers (8%) used both compartmental and
individual-based modelling [25,34,60,72,83,95,96].

Model fitting to data
Model parameter values can be based on existing stud-
ies, assumptions, or estimated directly from data [103].
Unknown parameters, such as infection transmission
rates, can be inferred by calibrating a model to empirical
data. With the increasing availability of computational
power, numerically-intensive statistical methods for
parameter inference have become more accessible. As
Figure 5b shows, although only 35% (34 studies) of HCAIs
models have incorporated some sort of calibration process
to empirical data, this proportion has increased over
time. Metrics used to quantify goodness of fit include
the least square criterion (minimisation of sums of
squares between the observed data and the model
predictions) [21,56,57,75], maximum likelihood estimation
(identification of the parameter value(s) that makes the
observed data most likely) [18,22,24,35,53,63,65,66]
and since 2007, Bayesian methods; frequently using

Markov Chain Monte Carlo (MCMC) approaches
[19,32,40,41,50,58,64,76] or a combination of MCMC
and maximum likelihood estimation [36,59]. A further
seven studies reported fitting their models by comparing
model predictions to observed epidemiological data
but did not apply any formal quantitative approach
[17,29,43,60,81,101,104].

Uncertainty in model predictions
Infectious disease models are developed and informed
using a combination of available evidence, for example
on infection transmission, disease natural history and inter-
vention effectiveness. As availability of such information is
unlikely to be complete, mathematical models inherently
include some degree of uncertainty. This uncertainty may
relate to model parameter values, model structure (e.g. in
terms of disease states incorporated and the relationship
between them) or methodology used [9,105].
Parameter uncertainty was investigated by 36% of the

studies (35 publications). As Figure 5b illustrates, similar
trends as seen for the application of formal model
calibration apply for the inclusion of parameter uncertainty.
Also the methods used for parameter uncertainty
have become more complex over time (Figure 5c). Of
the 35 studies that have investigated parameter uncer-
tainty, univariate sensitivity analysis (i.e. alteration of one
parameter at a time whilst holding others at their
base-case value) was conducted by 43% (15 studies)
[18,28,29,43,44,46,60,63,69,77,81,83,89,91,99]. The more
computationally expensive probabilistic sensitivity analysis
(formulation of uncertainty in the model inputs by a joint
probability distribution, and propagating this uncertainty
to the outputs [106]) is in general considered a rigorous
method to account for uncertainty in the joint distribution
of the parameters. This was employed by 51% (18
studies) [14,32,36,40-42,48,50,57-59,64,75,76,78,95,96,98]
among which Latin Hypercube Sampling (LHS) as a
means of performing probabilistic sensitivity analysis was
conducted by four studies [75,95,96,98]. Probabilistic
sensitivity analysis utilizing LHS provides a rigorous
method of incorporating and representing real uncertainty
surrounding parameter estimates into model-based ana-
lysis where joint probability distributions for parameters
are available.

Model validation
Model validation is rare in HCAI modelling. Ideally, a
model should be validated by means of comparing the
model predictions with observations from an alternative
dataset than the one used for model fitting, although this
is often difficult in practice. Four studies (5%) reported
some kind of model validation based on at least two
different data sets [50,53,75,101]. However, only one
study used a statistical approach [101], whereas the
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others included subjective comparison of the model
predictions (on infection transmission) with genotype
data [50,53,75].

Setting and interaction between settings
Mathematical models of HCAIs have primarily been set in
a single ward (49%, 47 studies), with the intensive care
unit (ICU) being the most frequent setting modelled (26%,
25 studies) [14,16,22,28,29,31,32,36,40-42,45,49,52,53,55,
63,65,72,79,82,91,101,107,108] or a simplified hospital set-
ting, lacking any further ward structure (31%, 30 studies)
[12,13,24,27,33,34,38,39,45,46,51,58,60,64,66,68,69,74,77,78-
,83-88,93,94,97,109]. More recent studies however, have
incorporated the interaction between general wards and the
ICU [23,43,69] or between different wards [11]. Although
these ward or hospital-based models do not usually treat
the hospital as a closed system (i.e. hospital admission and
discharge rates from and to a 'general community' are
frequently included), transfer patterns between healthcare
institutes are rarely considered [19,20,25,70,71,73], as are
transmission dynamics within settings outside the
healthcare facilities. The interaction between community
and hospital transmission has been included for MRSA
[30,35], antimicrobial resistant bacteria as a whole
[67], Severe Acute Respiratory Syndrome [76,102] and
tuberculosis [75]. Hence any possible long-term feedback
between the hospital and other settings is not taken
into account. Only two models concerned nosocomial
transmission in a LTCF setting alone, i.e. of influenza
[98] and norovirus [104] respectively.

Discussion
Models of MRSA transmission dominate the litera-
ture, followed by VRE, although to a considerably
lesser extent. Both have been the subject of national
surveillance and infection control policies in a variety
of developed countries [110-112]. This may account

Table 2 Healthcare infection control interventions
evaluated by a modelling framework (1997–2011)

Pathogen Interventions
studied

First
published

References

MRSA Hand hygiene 1997 [15-17,28,29,33,34,37,
40,44-46]

Antibiotic stewardship 1997 [16,21]

Isolation 1997 [14,16,26,32,35,41,42,45]

HCW cohorting 2002 [17,29,40,44,45]

Screening 2005 [14,23,25,32,34,39,44,45]

Decolonisation 2009 [14,25,26,33,34,40,45,46]

Patient cohorting 2007 [40]

Gown and glove use 2009 [32]

Other 2006 [43]

VRE Hand hygiene 1998 [12,21,28,47,49,51,54,55]

Antibiotic stewardship 1999 [47,51,55]

Isolation 2004 [12,52]

HCW cohorting 1998 [12,49,51,54,55]

Screening 2004 [47,52]

Decolonisation 2007 [50]

Patient cohorting 2008 [47]

Environmental
cleaning

2008 [47]

C. difficile Other 2009 [59]

ARB Hand hygiene 1997 [82]

Antibiotic stewardship 1997 [67,78,83-88]

Barrier precautions
(i.e. not specified)

2000 [85]

HCAI in
general

Hand hygiene 1999 [89,90]

Isolation 2005 [77,91]

HCW cohorting 2006 [77,90]

Screening 1999 [89]

Vaccination 2008 [77]

Barrier precautions
(i.e. not specified)

2007 [79]

Patient cohorting 2005 [91,92]

Environmental
cleaning

2007 [92]

Antibiotic prophylaxis 2007 [79]

Antibiotic stewardship 2008 [93]

HCW cohorting 2005 [91]

HIV Sterilization of medical
appliances

1999 [94]

Influenza
or ILI

Vaccination 2008 [95-97]

Prophylaxis 2009 [98]

Other 2008 [99,100]

Pertussis Vaccination 2009 [72,101]

Table 2 Healthcare infection control interventions
evaluated by a modelling framework (1997–2011)
(Continued)

Rotavirus Hand hygiene 2011 [81]

HCW cohorting 2011 [81]

Vaccination 2011 [81]

SARS Isolation 2007 [102]

Barrier precautions
(i.e. not specified)

2005 [74]

TB Isolation 2007 [75]

HIV treatment 2007 [75]

Air ventilation 2007 [75]

Facial mask 2007 [75]
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for the relative abundance of modelling studies. Despite
causing a high burden and being the subject of national
control policies [113,114], C. difficile transmission has
seldom been modelled. Similarly, bloodstream infections
due to third-generation cephalosporin-resistant E. coli,
which have been estimated to cause ~2,700 excess deaths
and 120,000 extra bed days in Europe in 2007 have
been considered by only one study [65]. For comparison,
MRSA was estimated to cause ~5,500 deaths and 256,000
additional bed days in Europe [115], yet has been the
subject of over 30 studies. It seems then that the
occurrence of models does not necessarily correlate
to the burden of disease. This is also true in low and
middle income countries, where a recently published
systematic review [116,117] demonstrated significantly
higher prevalence of HCAIs than in high income
countries; however, very few modelling studies have
tackled the problems of HCAI in less developed settings.
In terms of model methods, considerable changes

can be identified over time. After the introduction of
the first deterministic HCAI modelling study, inclusion of
stochasticity has become common practice. The majority
of the HCAI models evaluate infection control policies,
for which sound model parameterisation and sensitivity
analyses are required for reliable predictions. The use of
more sophisticated methods for model parameterisation
(e.g. MCMC) and uncertainty analysis has become
increasingly common.
HCAI models have also increased in complexity

regarding the settings modelled. Although the majority
of the models have considered a single ward (often
ICUs), the apparent emergence of transmission of typical
HCAIs in the community, in particular of MRSA
[118], have resulted in models which consider the
transmission of HCAI from a more holistic approach.

a

b

c

Figure 5 Development of HCAI model methods used over time
(1993–2011). Application of key modelling characteristics and
development over time. Figure 5a: Model approach Proportion of
models using a deterministic vs. stochastic and a compartmental vs
individual-based modelling approach by the total number of
publications in each time period. Note that the categories are
not exclusive, i.e. whereas all individual-based models identified
are stochastic, compartmental models may be deterministic or
stochastic. Moreover, a proportion of studies use a combination
of the above listed modelling approaches (e.g. a deterministic
compartmental model complemented by a stochastic individual-based
model). Figure 5b Model methods Proportion of models that are
fitted to data, have included uncertainty and are validated by
consultation of two different datasets by total number of
publications in each time period. Figure 5c Methods used for
characterising parameter uncertainty: Proportion of models that
have employed uni-variate, vs bi-variate vs probabilistic sensitivity
analysis by total number of publications that incorporated
parameter uncertainty in each time period.
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As the long-term feedback loop related to hospital dis-
charge and readmission of colonised patients and spread of
HCAI pathogens in the community or settings as LTCFs
can effect HCAI transmission dynamics [19,70,119], such
an approach can aid in providing a realistic estimate of
existing and new infection control strategies’ effectiveness.
This review has some limitations. First of all we have ex-

clusively considered peer-reviewed publications in English.
This might have resulted in a slight inaccuracy in our re-
sults, e.g. with regards to the modelling of particular path-
ogens in alternative national settings. We were exclusively
interested in models exploring the patient-to-patient
transmission of HCAI and antimicrobial resistance with-
in healthcare settings (either directly, or mediated by
healthcare workers and/or the healthcare environment).
This has resulted in the exclusion of a higher number of
models that elucidate the dynamics of antimicrobial resist-
ance in its own right, which are summarised elsewhere
[120,121]. Moreover, this review intended to provide over-
all trends in the field of HCAI modelling, rather than a de-
tailed account of the quality of individual models and of
what these models have shown, which could be a valid fu-
ture area of investigation.

Compartmental models (which group individuals in
classes) have predominated the field of HCAI modelling.
The emergence of individual-based modelling allows for
more realistic modelling of healthcare worker-patient
contact (e.g. super spreading events) or incorporation of
heterogeneity in transmission risk profiles of patients.
However, these approaches are computationally far more
intensive, are difficult to fit to data, and the inclusion of
additional factors makes more demand on the data avail-
able. Detailed level data such as observed healthcare
worker-patient contact collected for example via mote-
based sensor networks, as has been done recently [122],
could help parameterise such more complex models.
Moreover, recent technological developments in micro-

biology have resulted in enhanced access to pathogen se-
quence data, which could help to further improve HCAI
models. Such data are beginning to inform disease outbreaks
e.g. of avian influenza A (H7N7) [123] and Foot-and-Mouth
disease [124]. Importantly, the increasingly routine use of se-
quencing of genetic material for epidemiological purposes
can provide valuable insight, such as aiding in the under-
standing of the role of asymptomatic carriers in transmission
(e.g. of C. difficile) and evolution of antimicrobial resistance.

Figure 6 Milestones of HCAI modelling. Timeline listing new applications of mathematical models for HCAI and antimicrobial resistance over
time as well as improvements of these models according to year of publication.
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Conclusions
Transmission models concerning HCAI have showed
a general enhancement in complexity, but have been
almost completely limited to high-income settings,
and have strongly focused on MRSA transmission in
hospital settings. Further improvements in the availability
of data and statistical methods could enhance the insight
gained from these models.
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